CERT

Comité d'évaluation des ressources transfrontalières

Document de référence 2013/01

Ne pas citer sans autorisation des auteurs

TRAC

Transboundary Resources
Assessment Committee

Reference Document 2013/01

Not to be cited without
permission of the authors

Stock Assessment of Georges Bank

 Yellowtail Flounder for 2013Christopher M. Legault ${ }^{1}$, Larry Alade ${ }^{1}$, W. Eric Gross ${ }^{2}$, and Heath H. Stone ${ }^{2}$
${ }^{1}$ National Marine Fisheries Service
Northeast Fisheries Science Center
166 Water Street
Wood's Hole, MA, 02543
${ }^{2}$ Department of Fisheries and Oceans
St. Andrews Biological Station
531 Brandy Cove Road
St. Andrews, New Brunswick, E5B 2L9

Canadä

TABLE OF CONTENTS

ABSTRACT ii
RÉSUMÉ ii
INTRODUCTION 1
MANAGEMENT 2
THE FISHERIES 3
United States 3
Canada 4
Length and Age Composition 5
ABUNDANCE INDICES 6
ESTIMATION OF STOCK PARAMETERS 8
Building the Bridge 10
Diagnostics 10
STOCK STATUS 11
FISHERY REFERENCE POINTS 12
Per Recruit Reference Points 12
Stock and Recruitment 13
OUTLOOK 13
MANAGEMENT CONSIDERATIONS 15
LITERATURE CITED 16
APPENDIX 130

Abstract

The combined Canada/US yellowtail flounder catch in 2012 was 722 mt , with neither country filling its portion of the quota. This is the first time since 1940 the catch has been less than $1,000 \mathrm{mt}$. Despite the low catch, the two bottom trawl surveys conducted in spring 2013 declined to low values relative to their entire time series. All three bottom trawl surveys indicate low recruitment for the most recent three cohorts.

This assessment updates the Split Series and Single Series virtual population analysis (VPA) formulations that were approved at the last benchmark assessment to estimate stock size and fishing mortality. Both formulations exhibit strong retrospective patterns and rho adjustments are recommended for both determining stock status and providing catch advice. When the rho adjustments are applied, both formulations indicate low adult biomass at the start of 2013 (826 mt or $1,683 \mathrm{mt}$) and high fishing mortality in 2012 ($\mathrm{F}=0.78$ or 0.45). Catches of less than 200 or less than 500 mt are required to achieve the TMGC objective of not overfishing or allowing adult biomass to increase. Due to the assumption used for the 2012 year-class in the projections (geometric mean of recent ten years), the increase in adult biomass will be optimistic if the 2012 year-class is as poor as the recent year-classes.

RÉSUMÉ

En 2012, les prises combinées de limande à queue jaune au Canada et aux États-Unis étaient de 722 tm ; aucun des deux pays n'avait atteint sa partie du quota. C'était la première fois depuis 1940 que les prises étaient inférieures à 1000 tm . Malgré les faibles prises, les deux relevés au chalut de fond qui ont été effectués au printemps 2013 ont diminué à de faibles valeurs comparativement à l'ensemble de leur série chronologique. Les trois relevés au chalut de fond ont indiqué un faible recrutement pour les trois cohortes les plus récentes.

La présente évaluation apporte une mise à jour aux formules d'analyses de populations virtuelles à série fractionnée et à série unique qui ont été approuvées à la dernière évaluation des points de référence et qui servent à estimer la taille du stock et le taux de mortalité des poissons. Les deux formules affichent de fortes tendances rétrospectives, et des corrections rho sont recommandées pour déterminer l'état du stock et prodiguer des conseils relatifs aux prises. Lorsque les corrections rho sont appliquées, les deux formules indiquent une faible biomasse des adultes au début de 2013 (826 tm ou 1683 tm) et un taux élevé de mortalité par pêche en 2012 ($F=0,78$ ou 0,45). Des prises de moins de 200 ou de moins de 500 tm sont nécessaires pour atteindre l'objectif du Comité d'orientation de la gestion des stocks transfrontaliers, qui vise à éviter la surpêche et à permettre l'augmentation de la biomasse des adultes. En raison de l'hypothèse utilisée dans les projections pour la classe d'âge de 2012 (moyenne géométrique des dix dernières années), l'augmentation de la biomasse des adultes sera optimiste si cette classe d'âge est aussi faible que les classes d'âge récentes.

INTRODUCTION

The Georges Bank yellowtail flounder (Limanda ferruginea) stock is a transboundary resource in Canadian and US jurisdictions. This paper updates the last stock assessment of yellowtail flounder on Georges Bank, completed by Canada and the US (Legault et al. 2012), taking into account advice from the 2005 benchmark review (TRAC 2005). A primary objective of the benchmark review was to address the retrospective pattern that had been apparent from assessments conducted during the past several years. During the benchmark assessment meeting, several analytical models were reviewed, all of which indicated that the fishery catch at age and survey abundance at age show differences that cannot be reconciled. Various possible reasons for the retrospective pattern were identified including an increase in natural mortality, large amounts of unreported catch, and changes in survey catchability since 1995. The consensus view from the benchmark meeting was that management advice should be formulated on the basis of results from several approaches:

- Analysis of data from survey and fishery (trends in relative fishing mortality (F) and total mortality (Z))
- Base Case Virtual Population Analysis (VPA) model formulation from the 2004 assessment
- Two new VPA model formulations with minor and major changes to Base Case

The analytical methods used in the current assessment are based on revised model formulations adopted during the 2005 Transboundary Resources Assessment Committee (TRAC) benchmark review using updated information from both countries on catches and survey indices of abundance. During the 2009 TRAC meeting, it was decided that neither the Base Case nor Minor Change VPA would be considered any longer because neither had been used for management advice in a number of years (O'Brien and Worcester 2009). The Major Change model will be referred to as the "Split Series" model in this document since it is now the default model, while the Base Case model will be referred to as the "Single Series" model.
Last year, in 2012, the Split Series VPA model was used as the basis of status determination. This model downweighted the Canadian 2008 and 2009 surveys in the tuning process to account for their higher uncertainty caused by single large catches of yellowtail flounder in those years. This formulation indicated that catches have not reduced fishing mortality (F) below $\mathrm{F}_{\text {ref }}$ and have not had the expected effect on adult (age 3+) biomass or spawning stock biomass. If the 2013 catch quota had been set based on this model, this pattern of failing to achieve management objectives was expected to continue given the model's retrospective pattern. The TRAC recommended not basing 2013 catches on these unadjusted model projection results. Instead, five analyses were considered to address the retrospective bias to characterize the uncertainty and risk in catch advice. Both the Split Series and Single Series models had their population abundance at the start of 2012 reduced based on the Mohn's rho for spawning stock biomass. These projections had much lower catch advice in 2013 compared to the unadjusted projections. Alternative "fixes" to the retrospective pattern within the assessment model were employed by increasing recent catch, natural mortality, or both. These models and projections resulted in similar catch advice to the retrospective-adjusted Split Series and Single Series results. Based on examination of these five analyses, the TRAC concluded that to achieve both a high probability that F in 2013 will be less than Fref and that adult biomass will increase, a 2013 quota of approximately 200 mt would be required. A quota of $400-500 \mathrm{mt}$ had both positive and negative aspects among the five analyses, with either F in 2013 being below $F_{\text {ref }}$ or adult biomass increasing, but not both. The Transboundary Management Guidance Committee (TMGC) negotiated the combined US-Canada catch quota for 2013 to be 500 mt .

Yellowtail flounder range from southern Labrador to Chesapeake Bay and are typically caught at depths between 30 and 70 m . A major concentration occurs on Georges Bank from the Northeast Peak to the east of the Great South Channel. Yellowtail flounder have previously been described as relatively sedentary. However, there are also studies that counter this classification with off bottom movements (Walsh and Morgan 2004; Cadrin and Westwood 2004), limited seasonal movements (Royce et al. 1959; Lux 1963; Stone and Nelson 2003), and transboundary movements both east and west across the Hague Line (Stone and Nelson 2003; Cadrin 2005). On Georges Bank, spawning occurs during late spring and summer, peaking in May. Eggs are deposited on or near the bottom and, after fertilization, float to the surface where they drift during development. Larvae are pelagic for a month or more; then they become demersal and settle to benthic habitats. Based on the distribution of both ichthyoplankton and mature adults, spawning occurs on both sides of the Hague Line. Growth is sexually dimorphic, with females growing at a faster rate than males (Lux and Nichy 1969; Moseley 1986; Cadrin 2003). Yellowtail flounder maturation occurs earlier than in most flatfish with approximately half of females mature at age 2 and nearly all females mature at age 3.

MANAGEMENT

Historical and new information pertaining to the current management unit for the Georges Bank yellowtail flounder stock was reviewed during the 2005 benchmark assessment. Tagging data, larval distribution, vital population parameters (i.e. growth, survival, recruitment, reproduction, abundance), and geographic patterns of landings and survey data indicate that Georges Bank yellowtail flounder comprise a relatively discrete stock, separate from those on the western Scotian Shelf, off Cape Cod, and in southern New England waters (Royce et al. 1959; Lux 1963; Neilson et al. 1986; Begg et al. 1999; Cadrin 2003; Stone and Nelson 2003). Based on information from comprehensive reviews by Cadrin (2003; 2010) and recent results from cooperative science/industry tagging programs conducted by Canada and the US, there does not appear to be any justification for redefining the geographic boundaries of the Georges Bank yellowtail flounder stock management unit.
The management unit currently recognized by Canada and the US for the transboundary Georges Bank stock includes the entire bank east of the Great South Channel to the Northeast Peak, encompassing Canadian fisheries statistical areas 5Zj, 5Zm, 5Zn and 5Zh (Figure 1a) and US statistical reporting areas 522,525,551,552, 561 and 562 (Figure 1b). Both Canada and the US employ the same management unit.
In 1984, the International Court of Justice (ICJ) determined US and Canadian jurisdictions for Georges Bank fishery resources (ICJ 1984). At that time, there was no Canadian fishery for yellowtail. When a Canadian fishery developed in the early 1990s, Canada and US were exchanging information but conducting separate assessments. In the late 1990s, joint assessments were developed, and in 2001 a sharing agreement was formed (TMGC 2002). Since the establishment of the US and Canada sharing agreement in 2001, advice for the Georges Bank yellowtail flounder relied primarily on a bilateral management system provided by the TMGC. The agreement includes TAC for each country based on a formulaic calculation using both historical catch and current spatial stock distribution as determined by the three bottom trawl surveys. The quota sharing agreement between the two countries requires that catches from all sources be counted against the national allocations, regardless of whether the catch was landed or discarded. When accounting for catch, the assumption has always been made that all discarded fish die. Recent field work has demonstrated high discard mortality rates for yellowtail flounder (Barkley and Cadrin 2012), supporting this assumption. Although there is coordination between the US and Canadian fishery management, objectives between the two countries remain inconsistent, with US law requiring stock biomass rebuilding targets that are
not part of Canadian management. The passage of the International Fisheries Clarification Act in 2010 (Shark and Fishery Conservation Act 2011) relaxed the US rebuilding requirements, allowing more consistent management between the two countries.

THE FISHERIES

Exploitation of the Georges Bank yellowtail flounder stock began in the mid 1930s by the US trawler fleet. Landings (including discards) increased from 400 mt in 1935 to 9,800 mt in 1949, then decreased in the early 1950s to $2,200 \mathrm{mt}$ in 1956, and increased again in the late 1950s (Table 1 and Figure 2). The highest annual catches occurred during 1963-1976 (average: $17,500 \mathrm{mt}$) and included modest catches by distant water fleets (Table 1 and Figure 2). No catches of yellowtail by nations other than Canada and US have occurred since 1975. In 2001, the decision was made to manage the stock as a transboundary resource in Canadian and US jurisdictions (TMGC 2002). Catches averaged around 3,500 mt between 1985 and 1994, and then dropped to a low of $1,135 \mathrm{mt}$ in 1995 when fishing effort was markedly reduced in order to allow the stock to rebuild. The US fishery in the management area has been constrained by spatial expansion of Closed Area II in 1994 (Figure 1b) and by extension to year-round closure in December 1994, as well as mesh size and gear regulations and limits on days fished. In 2004, a Yellowtail Special Access Program (SAP) in Closed Area II allowed the US bottom trawl fishery short-term access to the area for the first time since 1995. This SAP did not continue in subsequent years. In 2010, a Haddock SAP in Closed Area II allowed the US bottom trawl fishery short-term access to the area and some yellowtail flounder were caught as bycatch in this fishery. A directed Canadian fishery began on eastern Georges Bank in 1993, pursued mainly by small otter trawlers (<20 m). Catches by both nations (including discards) steadily increased (with increasing quotas) from a low of 1,135 mt in 1995, when the stock was considered to be in a collapsed state, to $7,419 \mathrm{mt}$ in 2001. Since 2004, decreasing quotas and an inability of Canadian fishermen to fill their portion of the quota have resulted in a declining trend in catches through 2012 (catch in $2012=722 \mathrm{mt}$).

UNITED STATES

The principle fishing gear used in the US fishery to catch yellowtail flounder is the otter trawl, accounting for more than 95% of the total US landings in recent years, although scallop dredges have accounted for some historical landings. US trawlers that land yellowtail flounder generally target multiple species on the southwest part of the Bank, and on the northern edge along the western and southern boundaries of Closed Area II. Recreational fishing for yellowtail is negligible.

Landings of yellowtail flounder from Georges Bank by the US fishery during 1994-2012 were derived from the trip-based allocation described in the GARM III Data meeting (GARM 2007; Legault et al. 2008b; Palmer 2008; Wigley et al. 2007a). US landings have been limited by quotas in recent years. Total US yellowtail landings (excluding discards) for the 2012 fishery were 443 mt , a 51\% decrease from 2011 (Table 1 and Figure 2).
US discarded catch for years 1994-2012 was estimated using the Standardized Bycatch Reporting Methodology (SBRM) recommended in the GARM III Data meeting (GARM 2007, Wigley et al. 2007b). Observed ratios of discards of yellowtail flounder to kept of all species for large mesh otter trawl, small mesh otter trawl, and scallop dredge were applied to the total landings by these gears and by half-year. Large and small mesh otter trawl gears were separated at 5.5 inch (14 cm) cod-end mesh size. The large mesh fishery mainly targets groundfish, monkfish, skates, dogfish, and fluke (summer flounder), while the small mesh fishery mainly targets whiting (silver hake), herring, mackerel, and squid. Uncertainty in the
discard estimates was estimated based on the SBRM approach detailed in the GARM III Data meeting (GARM 2007; Wigley et al. 2007b). Average annual US discards were approximately 19% of the US catch in years 1994-2012 (Table 1 and Figure 2). Total discards of yellowtail in the US remained essentially the same from 2011 (192 mt) to 2012 (188 mt). A decrease in the large and small mesh trawl discards was offset by an increase in scallop dredge discards (Table 2a).

The total US catch of Georges Bank yellowtail flounder in 2012, including discards, was 631 mt . This value can be compared to the quota monitoring estimated catch of 644 mt for calendar year 2012, data kindly provided by Dan Caless of the Northeast Regional Office (Table 3). The strong similarity from the two estimates both this year and last year is encouraging, as this has not always been the case in the past.

The US Georges Bank yellowtail flounder quota for fishing year 2012 (1 May 2012 to 30 April 2013) was set at 564 mt . Monitoring of the US catches relative to the quota was based on Vessel Monitoring Systems (VMS) and a call-in system for both landings and discards. Reporting on the Regional Office webpage (http://www.nero.noaa.gov/ro/fso/MultiMonReports.htm) indicates the US groundfish fishery caught 58.5% of its sub-quota (368 mt) for the 2012 fishing year and the scallop fleet caught 104% of its sub-quota (164 mt) for the 2012 fishing year. However, the slight overage of the scallop fleet is due to this fleet transferring some of its original sub-quota to the groundfish fleet mid-year. The overall US catch from all fleets was below the US quota for fishing year 2012.

CANADA

Canadian fishermen initiated a directed fishery for yellowtail flounder on Georges Bank in 1993. Prior to 1993, Canadian landings were low, typically less than 100 mt (Table 1 and Figure 2). Landings of $2,139 \mathrm{mt}$ of yellowtail occurred in 1994, when the fishery was unrestricted. After a TAC of 400 mt was established, yellowtail landings dropped to 464 mt in 1995 . Subsequently, both quotas and landings increased and in 2001 landings reached a peak at $2,913 \mathrm{mt}$. The majority of Canadian landings of yellowtail flounder were made by otter trawl from vessels less than 20 m (tonnage classes 1-3). The fishery generally occurred from June to December, with most landings in the third quarter. Since 2004, there has been no directed Canadian fishery because fishermen have not been able to find commercial densities of yellowtail flounder. Landings have been less than 100 mt every year since 2004, with a low of 5 mt in 2009, and 46 mt reported in 2012. From 2004-2011, most of the reported yellowtail landings were from trips directed for haddock. In 2012, there were 9 trips directed for yellowtail flounder. These directed trips caught most of the landed yellowtail.
The Canadian offshore scallop fishery is the source of Canadian yellowtail flounder discards on Georges Bank. As a result of the 2005 benchmark review, these data are now incorporated into the Canadian fishery catch and catch at age for 1973 onward (TRAC 2005). Discards are not recorded in the Canadian fishery statistics and are therefore estimated from at-sea observer deployments using the methodology documented in Van Eeckhaute et al. (2005). Since August 2004, there has been routine observer coverage on vessels in the Canadian scallop fishery on Georges Bank. A total of 5 trips were observed in 2004, 11 in 2005, 11 in 2006, 14 in 2007, 23 in 2008, 21 in 2009, 24 in 2010, 22 in 2011, and 20 in 2012. Discards for the years 2004-2012 were obtained by estimating a monthly prorated discard rate (kg/hr), using a 3-month movingaverage calculation to account for the seasonal pattern in bycatch rate, applied to a monthly standardized effort (Table 2b-c) (Van Eeckhaute et al. 2010). The result of these calculations for 2012 is a discard estimate of 45 mt , the lowest in the time series (Table 1 and Figure 2).

For 2012, the total Canadian catch, including discards, was 91 mt , a 25% increase from 2011, which is 16% of the 2012 TAC of 586 mt .

LENGTH AND AGE COMPOSITION

The level of US port sampling continued to be strong in 2012, with 4,293 length measurements available from 50 samples, resulting in 969 lengths/100 mt of landings (Table 4). This level of sampling has generally resulted in increased precision (i.e. low coefficients of variation) for the US landings at age from 1994-2012, as estimated by a bootstrapping procedure (Table 5). The port samples also provided 898 age measurements for use in age-length keys. The Northeast Fisheries Observer Program provided an additional 3,502 length measurements of discarded fish from 464 trips, which were combined with the port samples to characterize the size composition of the US catch.

The US landings are classified by market category (large, small, medium, and unclassified) and this categorization is used to determine the size and age distributions. Both the amount and the proportion of yellowtail landed in the large market category have generally increased since 1995 (from approximately 50% to approximately 75%). Examination of the size distributions of the large and small market categories continues to show some overlap in the $36-38 \mathrm{~cm}$ range, but overall discrimination between the groups was apparent (Figure 3).

In 2012, three port samples (697 length measurements) and nine observer samples (10,879 length measurements) were collected from the 46 mt of Canadian landings (Table 4). These samples were expanded to the total catch using sex-specific length-weight relationships.

The US discard length frequencies were generated from observer data, expanded to the total weight of discards by gear type and half year. Large mesh trawl discards showed a strong peak near the minimum allowed size (Figure 4). Small mesh discards accounted for only a small portion of the total discards and had few fish measured for length, resulting in a disjointed distribution of fish at length (Figure 4). The small mesh otter trawl fishery is prohibited from landing groundfish, so can have discards of fish above the minimum size regulation. Scallop dredge discards were mainly legal-sized fish, as has been typically seen for dredge gear in the past (Figure 4).
The size composition of yellowtail flounder discards in the Canadian offshore scallop fishery was estimated by half year using length measurements obtained from 20 observed trips in 2012. These were prorated to the total estimated bycatch at size using the corresponding half year length-weight relationship and the estimated half year bycatch (mt) calculated using the methods of Stone and Gavaris (2005).
A comparison of the 2012 size composition of yellowtail catch by country shows quite similar length distributions for landings by the US and Canada (Figure 5). US discards were also quite similar in both mean size and spread in the distributions relative to Canadian discards (Figure 6). The total catch also had similar mean size and spread in the distribution for the two countries, although the low magnitude of Canadian catch relative to US catch makes this comparison suspect (Figure 7).
Although otoliths are used to determine ages for Grand Bank yellowtail (Walsh and Burnett 2001), age determination of Georges Bank yellowtail flounder using otoliths is hampered by the presence of weak, diffuse, or split opaque zones and strong checks, which can make interpretation of annuli subjective and difficult (Stone and Perley 2002). Therefore, scales are the preferred structure for aging Georges Bank yellowtail flounder. Percent agreement on scale ages by the US readers continues to be high ($>85 \%$ for most studies) with no indication of bias.

For the US fishery, sample length frequencies were expanded to total landings at size using the ratio of landings to sample weight (predicted from length-weight relationships by season; Lux 1969), and apportioned to age using pooled-sex age-length keys in half year groups. Landings were converted by market category and half year, while discards were converted by gear and half-year. The age-length keys for the US landings used only age samples from US port samples. In the past, the age-length keys for the US discards used age samples from at-sea observers of the discarded catch supplemented with US surveys. Since 2004, the scales collected by the observers have not been aged, so the US surveys and commercial landings provided ages.

No scale samples were available for the Canadian fishery in 2012. Therefore, the Canadian landings and discards at length were converted to catch at age using the US age-length keys by half-year and catch type (landings or discards). Canadian landings and discards each accounted for 6% of the total 2012 catch.

In 2012, ages 3 through 5 (2009-2007 year-classes, respectively) dominated US landings, while ages 3 and 4 dominated US discards, with only minor contributions from Canadian landings and discards (Figure 8). Since the mid 1990s, ages 2-4 have constituted most of the exploited population, with very low catches of age 1 fish due to the implementation of larger mesh (increased from 5.5 to 6 inches in May 1994) in the cod-end of US commercial trawl gear (Table 6 and Figure 9). Despite management measures intended to reduce fishing effort over the past several years, there are few fish greater than age 5 in the catch at age.

The fishery mean weights at age for Canadian and US landings and discards were derived using the applicable age-length keys, length frequencies, and length-weight relationships. The mean weight at age (kg) for the Canadian and US landings were quite similar and generally were more variable at older ages (5+) during the mid 1980s to the mid 1990s. The combined fishery weights at age were calculated from Canadian and US landings and discards, weighting by the respective catch at age (Table 7 and Figure 10). Weights at age have been increasing recently, following a decline during the mid 2000s, and are returning to levels seen in the late 1970s/early 1980s. Recent weights at age (WAA) values are above average for ages 1 and 2 and below average for the other ages, but all ages are within the range of past WAA calculations since 1973.

ABUNDANCE INDICES

Research bottom trawl surveys are conducted annually on Georges Bank by the Canadian Department of Fisheries and Oceans (DFO) in February (denoted spring) and by the US National Marine Fisheries Service (NMFS) Northeast Fisheries Science Center (NEFSC) in April (denoted spring) and October (denoted fall). Both agencies use a stratified random design, though different strata boundaries are defined (Figure 11).
The NMFS spring and fall bottom trawl survey catches (strata 13-21), NMFS scallop survey catches (scallop strata 54, 55, 58-72, 74), and DFO spring bottom trawl survey catches (strata $5 Z 1-5 Z 4$) were used to estimate relative stock biomass and relative abundance at age for Georges Bank yellowtail. Conversion coefficients, which adjust for survey door, vessel, and net changes in NMFS groundfish surveys (1.22 for BMV oval doors, 0.85 for the former NOAA ship Delaware II relative to the former NOAA ship Albatross IV, and 1.76 for the Yankee 41 net; Rago et al. 1994; Byrne and Forrester 1991) were applied to the catch of each tow for years 1973-2008.

There continues to be high variability in the survey indices. Specifically, beginning in 2009 the NMFS bottom trawl surveys were conducted with a new vessel, the NOAA ship Henry B.

Bigelow, which uses a different net and protocols from the previous survey vessel. Conversion coefficients by length have been estimated for yellowtail flounder (Brooks et al. 2010; Table 8) and were applied in this assessment. The DFO 2008 and 2009 surveys encountered individual tows that were much larger than any seen previously, or since, in the time series.

Trends in yellowtail flounder biomass indices from the four surveys track each other quite well over the past two decades, with the exception of the DFO survey in 2008 and 2009, which were influenced by single large tows (Figure 12a-d). The minimum swept area biomass estimated from the DFO survey increased from 1995 to 2001, declined through 2004, fluctuated through 2007, and then increased dramatically in 2008 and 2009 due to single large tows in each year, as seen by the unusually large coefficients of variation for those years (Table 9 and Figure 12bd). Exclusion of these single tows resulted in a decline in the indices by about an order of magnitude, as shown in previous assessments (Legault et al. 2009, 2010, 2011). The 2013 DFO biomass is the second smallest in the time series. The NMFS spring series was high in the mid 1970s, low in the late 1980s through mid 1990s, high from 1999 through 2003, medium from 2004 through 2012, and showed a large drop in 2013 (Table 10 and Figure 12b,d). The NMFS fall survey, which is the longest time series, was high in the mid 1960s through mid 1970s, low in the mid 1980s through mid 1990s, increased through 2001, declined through 2005, and has remained at levels comparable to the late 1960s for years 2007-2009, but in 2010 through 2012 declined to the values comparable to the early 1980s (Table 11 and Figure 12b,d). The scallop survey stratified mean catch per tow shows a strong increase from low levels in the mid 1990s to a peak in 1998 followed by a decline through 2005, and has fluctuated since (Table 12 and Figure 12b). Both the NMFS spring and fall survey indices show high inter-annual variability during the periods of high abundance (i.e. the 1960s and 1970s), which may reflect the patchy distribution of yellowtail on Georges Bank. The coefficients of variation of the three groundfish surveys are generally comparable, with the exception of the unusually large values for the DFO survey in 2008 and 2009 due to the single large tows each year (Tables 9-11 and Figure 12c).
The distribution of catches (weight/tow) for the most recent year compared with the previous ten year average for the three groundfish surveys show that yellowtail flounder distribution on Georges Bank in the most recent year has been consistent relative to the previous ten years (Figure 13a-b). Note the 2009 through 2013 NEFSC survey values were adjusted from Henry B. Bigelow to Albatross IV equivalents by dividing Henry B. Bigelow catch in weight by 2.244 (spring) or 2.402 (fall). Since 1996, most of the DFO survey biomass and abundance of yellowtail flounder has occurred in strata 5Z2 and 5Z4 (Figure 14a). However, in 2008 and 2009 almost the entire Canadian survey catch occurred in just one or two tows in stratum 5Z1, making interpretation of trends over time difficult. The NEFSC bottom trawl surveys have been dominated by stratum 16 since the mid 1990s (Figure 14b-c).
Given the calibration at length for the US spring and fall surveys (Table 8), the question was raised during a previous TRAC meeting whether there were indications of recruiting yearclasses in the uncalibrated Henry B. Bigelow data that were removed by the calibration to Albatross IV units. The raw length distributions from the Henry B. Bigelow were plotted together with the calibrated length distributions in Albatross IV units and no indication of strong yearclasses at small lengths ($<30 \mathrm{~cm}$) were observed in the US spring 2010-2013 or US fall 20102012 surveys (Figure 15).
Age-structured indices of abundance for NMFS spring and fall surveys were derived using survey specific age-length keys. Prior to 2004, age-length keys from NMFS spring surveys had been substituted to derive age composition for same-year DFO spring surveys, as no ages were available from the DFO surveys because of difficulties associated with age interpretation from otoliths (Stone and Perley 2002). To avoid having to use substituted age data, NMFS personnel
have been ageing scales collected on DFO surveys since 2004 and continued to do so this year.

There is some indication of cohort tracking in all three of the bottom trawl surveys (Figure 16ah). Even though each index is noisy, the age specific trends track relatively well among the four surveys (Tables 9-12 and Figure 17a-b).

Measurements of individual yellowtail flounder length and weight were collected from the US spring and fall surveys to examine whether changes in condition have occurred over time (Figure 18a-b). Median weights at length from both surveys indicate a declining trend for yellowtail flounder 33-44 cm, sizes associated with the majority of commercial catch, although the most recent year indicates a return towards the mean. A similar pattern was found in the condition factor (Fulton's K) for male and female yellowtail flounder in the DFO survey (Figure 18c).

Trends in relative fishing mortality and total mortality from the surveys were examined as part of the consensus benchmark formulations agreed to at the second benchmark assessment meeting in April 2005. Relative fishing mortality (fishery catch biomass/survey biomass, scaled to the mean for 1987-2010) was quite variable but followed a similar trend for all four surveys, with a sharp decline to low levels since 1995 (Figure 19). In contrast, estimates of total mortality rates from the surveys for ages 2,3 and $4-6$, although noisy, were without trend and indicate no overall reduction in mortality since 1995 (Figure 20). Similarly, time series of cohort Z estimated from the three bottom trawl surveys do not indicate a reduction in recent years (Figure 21a-c). This disparity in the basic data continues to cause difficulty for the stock assessment of Georges Bank yellowtail flounder.

ESTIMATION OF STOCK PARAMETERS

Results from assessment analyses conducted in recent years have displayed: a) retrospective patterns; b) residual patterns that are indicative of a discontinuity starting in 1995; and c) fishing mortality rates that are not consistent with the decline in abundance along cohorts evident in the survey data. Essentially, the catch at age data and assumed natural mortality rate cannot be reconciled with the change in survey abundance indices from ages 2 and 3 to ages 4 and older.
The empirical evidence suggests that significant modifications to the population and fishery dynamics assumptions are required to reconcile the fishery and the survey observations. Models that adopt such modifications imply major consequences on underlying processes or fishery monitoring procedures. The magnitude of implied changes to natural mortality rate, survey catchability relationships, or unreported catch is so great that the acceptability of models that incorporate these effects is suspect. However, these models may provide better catch advice for management of this resource than ignoring the changes in underlying processes (ICES 2008).
In view of these reservations, adoption of a benchmark formulation that incorporated these modifications to assumptions as the sole basis for management advice was not advocated (TRAC 2005). Therefore, the TRAC recommended that management advice be formulated after considering the results from three VPA approaches: Base Case (now called Single Series), Minor Change, and Major Change (now called Split Series). The Minor Change VPA was never used in any subsequent assessment (Stone and Legault 2005; Legault et al. 2006, 2007, 2008a) and it was agreed during the 2009 TRAC that it would not be continued in the future (Legault et al. 2009). The Single Series VPA was continued for a number of years after the benchmark, but was not used to provide management advice for five years (Legault et al. 2006, 2007, 2008a, 2009, 2010). At the 2011 TRAC meeting, the re-emergence of a retrospective
pattern in the Split Series VPA model led to the re-evaluation of the Single Series VPA model. The Single Series VPA continued to show a stronger retrospective pattern than the Split Series VPA, but some TRAC participants considered it better to use just a single retrospective adjustment (the Mohn's rho adjustment to starting population abundance for projections) rather than two (splitting the surveys and applying a retrospective adjustment). As described above, at the 2012 TRAC the Split Series VPA with retrospective adjustment, the Single Series VPA with retrospective adjustment, and three alternative retrospective "fixes" were used to provide catch advice. This large number of models caused concern and led to a Term of Reference at the Eastern Georges Bank cod benchmark assessment meeting to review criteria for evaluation and modification of benchmark assessments. Based on these discussions, only the Split Series VPA with retrospective adjustment and Single Series VPA with retrospective adjustments are provided for recommending catch advice this year. The Split Series VPA remains the default approach for determining current status and providing management advice. The Single Series VPA results are presented below alongside the Split Series VPA results simply to facilitate comparison between the two models.

The VPA is calibrated using the adaptive framework ADAPT (Conser and Powers 1990; Gavaris 1988; Parrack 1986) to calibrate the sequential population analysis with the research survey abundance trend results, specifically the NOAA Fisheries Toolbox VPA v3.3. The model formulation employed assumed error in the catch at age was negligible. Errors in the abundance indices were assumed independent and identically distributed after taking natural logarithms of the values. The exception to this assumption is the DFO survey values for 2008 and 2009 were downweighted (residuals multiplied by 0.5) to reflect the higher uncertainty associated with these observations relative to all other survey observations. Zero observations for abundance indices were treated as missing data, because the logarithm of zero is undefined. The annual natural mortality rate, M, was assumed constant and equal to 0.2 for all ages and years. The fishing mortality rates for age groups 4, 5 and $6+$ were assumed equal. These model assumptions and methods were the same as those applied in the last assessment (Legault et al. 2012). Both point estimates and bootstrap statistics of the estimated parameters were derived using only the US software for this assessment.
The Split Series VPA recommended during the benchmark assessment expanded the ages from 6+ to 12, assumed a constant small number of fish (1000) survived to the start of age 13, allowed power relationships between indices and population abundance for younger ages (1-3), and split the survey time series between 1994 and 1995. This model could not be fit well in previous assessments (Legault et al. 2006, 2007, 2008a) due to a lack of catch at older ages creating bimodal bootstrap distributions. Following the precedent of previous assessments, the Split Series VPA was reformulated to be the same as the Single Series VPA (i.e. by reverting to ages 1-6+ for the catch at age), with the exception that the survey time series were split at 1995 (Legault et al. 2006, 2007, 2008a, 2009, 2010, 2011, 2012). This means that indices and population abundance are assumed linearly related at all ages and that a 6+ group is used for all fish aged 6 and older in the population dynamics equations. Splitting the survey series had been sufficient to remove the retrospective pattern and the pattern in residuals until the 2011 assessment, and was recommended for management advice because it more closely followed the pattern observed in the indices. This Split Series formulation was used again this year to provide management advice.

The Split Series VPA used revised annual catch at age (including US and Canadian discards), $\mathrm{C}_{\mathrm{a}, \mathrm{t}}$, for ages $\mathrm{a}=1$ to $6+$, and time $t=1973$ to 2012, where t represents the beginning of the time interval during which the catch was taken. The VPA was calibrated to bottom trawl survey indices, $\mathrm{I}_{\mathrm{s}, \mathrm{a}, \mathrm{t}}$, for:
$s_{1}=$ DFO spring, ages $a=2$ to $6+$, time $t=1987$ to 1994
$s_{2}=$ DFO spring, ages $a=2$ to $6+$, time $t=1995$ to 2013
(note: $s_{2}=$ DFO spring, ages $a=2$ to $6+$, time $t=2008$ to 2009 residuals were downweighted)
$s_{3}=$ NMFS spring (Yankee 41), ages $a=1$ to $6+$, time $t=1973$ to 1981
$s_{4}=$ NMFS spring (Yankee 36), ages $a=1$ to $6+$, time $t=1982$ to 1994
$s_{5}=$ NMFS spring (Yankee 36), ages $a=1$ to $6+$, time $t=1995$ to 2013
(note: $s_{5}=$ NMFS spring (Yankee 36), ages $a=1$ to $6+$, time $t=2009-2013$ were converted from
Henry B. Bigelow to Albatross IV equivalent)
$s_{6}=$ NMFS fall, ages $a=1$ to $6+$, time $t=1973.5$ to 1994.5
$s_{7}=$ NMFS fall, ages $a=1$ to $6+$, time $t=1995.5$ to 2012.5
(note: $s_{7}=$ NMFS fall, ages $a=1$ to $6+$, time $t=2009.5-2012.5$ were converted from Henry B. Bigelow to Albatross IV equivalent)
$s_{8}=$ NMFS scallop, age $a=1$, time $t=1982.5$ to 1994.5
$s_{9}=$ NMFS scallop, age $\mathrm{a}=1$, time $t=1995.5$ to 2012.5
(note: the NMFS scallop survey was not used for years 1986, 1989, 1999, 2000, 2008, 2011, or 2012)

Splitting the survey time series between 1994 and 1995 could not be justified based on changes in the survey design or implementation. Rather the split is considered to alias unknown mechanisms causing the retrospective pattern in the Single Series VPA. Population abundance at age 1 in the terminal year plus one (2013) was assumed equal to the geometric mean over the most recent 10 years (2003-2012). Population abundance in the terminal year plus one (2013) was estimated directly for ages 2-5.

BUILDING THE BRIDGE

There was only one change to the data from the 2012 TRAC assessment. The Canadian landings at age were revised for 2010 and 2011. These were small changes resulting in changes to the total catch at age of $<2 \%$ for all ages and changes to the total weights at age of $<1 \%$. These small data changes were evaluated relative to the final 2012 TRAC assessment and had only a minor impact on results (trend lines not visibly different from 2012 TRAC for F, SSB, or recruitment; Figure 22).

These revised catch data were the starting point for the new assessment, which then added a year of catch and survey indices.

DIAGNOSTICS

The Split Series VPA performed similarly compared to previous assessments in terms of relative error and bias in the population abundance estimates with lower relative error and bias at older ages than at younger ages (Table 13a). This pattern of higher uncertainty in the younger ages has been seen in previous assessments and is due to having less information about these cohorts. The Single Series VPA had slightly higher uncertainty and bias in the population abundance estimates (Table 13b).

Survey catchability constants (q) for the Split Series VPA also followed similar patterns to previous assessments (Table 13a and Figure 23a). The most notable pattern was the increase in estimated values at nearly all ages between the pre-1995 and the recent period (1995 to
present), with some ages showing more than a seven-fold increase and averaging a four-fold increase. There have been no changes in the survey design or operations that can explain such changes. These changes in q are considered to be aliasing unknown mechanisms for the sole purpose of producing a better fitting model. Management strategy evaluations have demonstrated that even if the true source of the retrospective pattern is misreported catch or changes in natural mortality, this approach of splitting the time series to address the retrospective problem produces better performance (true F closer to target F, and thus better catch advice) than ignoring the retrospective pattern (ICES 2008). The survey catchability constants (q) for the Single Series VPA follow a similar pattern over ages to the Split Series VPA, but at a magnitude between the early and recent q values of the Split Series VPA (Table 13b and Figure 23b).

The Split Series VPA residuals exhibit some patterning with mainly positive or negative residuals during different periods throughout the time series (Figure 24a). This patterning is worse than has been seen for the Split Series VPA in previous years. The plotted residuals for the 2008 and 2009 DFO survey account for the downweighting used in the fitting, but still appear as strong positive residuals (observed values larger than predicted) except for age 6+ in 2008. The standard sampling protocol in 2008 did not collect any age 6+ yellowtail flounder in the large tow that year. The Single Series VPA residuals exhibit a worse patterning with large blocks of mainly positive or negative residuals (Figure 24b).

An alternative method to view the change in catchability is to plot the relative catchability (the survey observation divided by the estimated beginning of year population abundance) with the Split Series estimate of catchability overlaid as lines (Figure 25a-c). These plots do not adjust the population abundance to account for the time of the survey. The changes in relative catchability appear strong and consistent for many surveys and ages, as opposed to being driven by just one or two outlier values, further supporting the approach of splitting the surveys. The similar set of plots for the Single Series VPA shows the strong patterning in residuals in the standard residual plots with many consecutive years having the dots above or below the lines (Figure 25d-f).
Retrospective analysis for the Split Series VPA indicate a strong tendency to overestimate spawning stock biomass and recruitment and underestimate F, relative to the terminal year (Table 14a and Figure 26a-b). These retrospective patterns are about as strong as observed in the Base Case formulations of previous assessments (Legault et al. 2009, 2010, 2011). The Single Series VPA exhibited retrospective patterns in the same directions as, but at a much greater magnitude than, the Split Series VPA (Table 14b and Figure 26c-d).
Despite the strong retrospective pattern in spawning stock biomass and fishing mortality rate, the Split Series VPA is recommended as the basis for estimating current stock size and fishing mortality rate. However, a retrospective adjustment should be applied when providing catch advice.

STOCK STATUS

Results from the Split Series VPA were used to evaluate the status of the stock in 2012. Population abundance at age for the start of the year was estimated for years 1973-2013 (Table 15a) along with estimates of fishing mortality rates at age during years 1973-2012 (Table 16a). Due to the backward convergence of VPA, the Single Series VPA has identical estimates with the Split Series VPA for early years, diverging starting in 1998 for population abundance at age (Table 15b) and in 2005 for fishing mortality rates at age (Table 16b) (the years differ due to the different level of precision used to display population abundance and fishing mortality rates at age). The fishery weights at age, assumed to represent mid-year
weights, were used to derive beginning of year weights at age (Table 17), and these were used to calculate beginning of year population biomass (Table 18a-b). In the US, spawning stock biomass is the legal status determination criterion and is computed assuming maturity at age and the proportion of mortality within a year that occurs prior to spawning ($p=0.4167$).

Based on the Split Series VPA, adult population biomass (Jan-1, ages 3+) increased from a low of 2,100 mt in 1995 to 10,900 mt in 2003, declined to 2,400 mt in 2007, averaged 3,100 from 2007 to 2011, and decreased to $2,500 \mathrm{mt}$ at the beginning of 2013 (Table 18a and Figure 27a). Total population biomass (age 1+) has generally tracked the three groundfish surveys, although splitting the series between 1994 and 1995 implies high catchability of the surveys in recent years (Table 18a and Figure 28a). Spawning stock biomass in 2012 was estimated to be 2,600 mt (80% confidence interval: 2,180-3,244 mt). These 2012 values are well below the TRAC 2012 estimates for 2011 and reflect the strong retrospective pattern in spawning stock biomass. For comparison, the corresponding tables and figures for the Single Series VPA are provided in Table 18b and Figures 27b and 28b.

During 1973-2012, recruitment averaged 18.9 million fish at age 1 but has been below this average since 2002 (Table 15a and Figure 29a). The 2005 year-class is estimated at 10.1 million age 1 fish in 2006, well below previous estimates of this year-class. The 2009-2011 ageclasses are estimated to be less than 3 million age 1 fish, and are the lowest in the time series. The low recent recruitment limits the ability of the stock to produce yield or rebuild. The Single Series VPA also estimates recent recruitment to be the lowest in its time series (Table 15b and Figure 29a).

Fishing mortality for fully recruited ages 4+ was close to or above 1.0 between 1973 and 1995, fluctuated between 0.51 and 0.97 during 1996-2003, increased in 2004 to 1.94, and then declined to 0.60 in 2011. In 2012, F was estimated to be 0.32 (80% confidence interval for 2012: $0.24-0.41$), above the reference point of $F_{\text {ref }}=0.25$ (Table 16a). This pattern in F does not correspond with the relative fishing mortality rate pattern estimated as catch/survey (Figure 19). The relative F pattern shows a sudden decline in 1995 and continued low levels since then. The Single Series VPA has the same trend in F as the Split Series VPA through 2005, then declines at a faster rate to 0.09 in 2012 (Table 16b).
The bootstrap uncertainty estimates do not capture the full amount of uncertainty in this assessment due to the strong retrospective patterns in both the Split Series and Single Series VPA results. A retrospective adjustment has been recommended in the past by TRAC for catch advice to account for this additional uncertainty. The retrospective adjustment is computed as $1 /(1+\mathrm{rho})$ and is multiplied by the point estimate to create the rho adjusted values. Application of this rho adjustment to terminal year estimates from the Split Series and Single Series show how large these changes are, with the Single Series changes much larger than the Split Series changes (Table 19). Application of the rho adjustment produces 2012 F values well above Fref for both models, as well as the lowest estimates of spawning stock biomass and adult biomass in their respective time series (Figures 29-30). The 2012 recruitment estimate (R), already the lowest in the time series, is further reduced by application of the rho adjustment.

FISHERY REFERENCE POINTS

PER RECRUIT REFERENCE POINTS

The current reference fishing mortality rate used by the TMGC ($F_{\text {ref }}=0.25$, ages $4+$) was derived from both $\mathrm{F}_{0.1}$ and $\mathrm{F}_{40 \% \mathrm{MSP}}$ calculations, which were numerically equal in value when the $\mathrm{F}_{\text {ref }}$ value was selected (TMGC 2003). Both the 2002 and 2008 assessment yield per recruit analysis (NEFSC 2002, 2008) confirmed that both these values remain at 0.25 . This is the same
value as the $\mathrm{F}_{\text {MSY }}$ proxy of $\mathrm{F}_{40 \% \mathrm{MsP}}$ used for US management (NEFSC 2008). The current three year averages for weights at age and fishery partial recruitment produce estimates for both $\mathrm{F}_{40 \% \mathrm{MsP}}$ and $\mathrm{F}_{0.1}$ of 0.30 . This suggests that $\mathrm{F}_{\text {ref }}$ is relatively robust to the changes in partial recruitment observed over the years.

STOCK AND RECRUITMENT

The TMGC does not have an explicit biomass target. There is evidence of reduced recruitment at low levels (below 5,000 mt) of spawning stock biomass (Figure 31a-b). A similar pattern is seen in the Single Series VPA (Figure 31c-d). In the US, a similar stock-recruitment relationship from the GARM III assessment (NEFSC 2008) was used to estimate the SSB MSY $^{\text {proxy }}$ by projecting the population for many years with $\mathrm{F}=\mathrm{F}_{40 \% \mathrm{MSP}}$ and recruitment randomly selecting from the cumulative distribution function of recruitment observed at SSB $>5,000 \mathrm{mt}$. The SSB $_{\text {MSY }}$ level of $43,200 \mathrm{mt}$ of spawning stock biomass was set as the rebuilding goal in the US for this stock (NEFSC 2008). Spawning stock biomass is currently well below the US rebuilding goal $\left(\mathrm{SSB}_{2012} / \mathrm{SSB}_{\mathrm{MSY}}=6 \%\right.$, rho adjusted $\left.\mathrm{SSB}_{2012} / \mathrm{SSB}_{\mathrm{MSY}}=2 \%\right)$.

OUTLOOK

This outlook is provided in terms of consequences with respect to the harvest reference points for alternative catch quotas in 2014. Uncertainty about current biomass generates uncertainty in forecast results, which is expressed here as the risk of exceeding $F_{\text {ref }}=0.25$. The risk calculations assist in evaluating the consequences of alternative catch quotas by providing a general measure of the uncertainties. However, they are dependent on the data and model assumptions and do not include uncertainty due to variations in weight at age, partial recruitment to the fishery, natural mortality, systematic errors in data reporting, or the possibility that the model may not reflect stock dynamics closely enough.
Projections for both the Split Series and Single Series VPA were made using 2010-2012 average fishery partial recruitment and fishery weights at age to account for the most recent conditions in the fishery and biological characteristics (Table 20a). Deterministic projections were made for both VPA models with and without rho adjustment for comparative purposes (Table 20b-e). Following previous practice, the 2013 rho adjusted values used the SSB rho value for all ages. All the projections assume a catch in 2013 equal to the 500 mt total quota and apply $F_{\text {ref }}$ in 2014. This catch results in a fully selected fishing mortality rate below $F_{\text {ref }}$ for both unadjusted models (0.246 and 0.069 for the Split Series and Single Series, respectively), but above $F_{\text {ref }}$ for both rho adjusted models (0.975 and 0.367 for the Split Series and Single Series, respectively). Fishing at $F_{\text {ref }}$ in 2014 causes the adult (ages $3+$) Jan-1 biomass to increase for both rho adjusted models and the Split Series unadjusted model, but decrease for the unadjusted Single Series model. Note the importance in all four cases of the assumed recruitment value at age 1 in 2013, which is age 3 in 2015, when calculating the change in adult biomass from 2014 to 2015. The unadjusted projections result in 2014 catches of 535 mt and $1,754 \mathrm{mt}$ for the Split Series and Single Series VPA models, respectively. The TRAC has recommended not using these unadjusted projections because of the additional uncertainty in the assessment due to the retrospective patterns. When the rho adjustments are applied, the projections result in 2014 catches of 112 mt and 293 mt for the Split Series and Single Series VPA models, respectively. These deterministic projections are provided to allow tracking of cohort effects and comparison of proportional impacts by age in each year of the projections.

The TRAC uses stochastic projections to examine the risk of overfishing, meaning exceeding $F_{\text {ref, }}$, in 2014 and the probability of stock increase, meaning the change in adult (ages 3+) Jan-1 biomass from 2014 to 2015, resulting from given quotas being set in 2014. These stochastic
projections use bootstrapped realizations of the 2013 population abundance at age to characterize the uncertainty of starting conditions and randomly draw from a two stage cumulative distribution function of recruitment estimates as described above in the Stock and Recruitment section. However, there is essentially no impact of the recruitment assumption at age 1 in year 2014 or 2015 on the TRAC risk of overfishing or change in adult biomass, as can be seen by tracking these cohorts in the deterministic projection tables. All other aspects of the stochastic projections are the same as the deterministic projections described above. The changes between deterministic and stochastic projections when F in 2014 is set to 0.25 are minor, as can be observed by comparing Table 20b-e with Table 21.

The stochastic projection results for the unadjusted Split Series and Single Series VPAs are shown in Tables 21-22 for completeness only. They are shown in a different font to reflect the recommendation from previous TRAC meetings to not use these projections for catch advice. The rho adjusted Split Series and Single Series VPAs require a 2014 catch of between 100 and 200 or between 300 and 400 mt to have a neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ (Table 22). A 2014 catch of less than 500 mt is required to have a neutral risk of adult biomass increase from 2014 to 2015 for the rho adjusted Split Series VPA, while the rho adjusted Single Series VPA requires a 2014 catch less than 400 mt . These catch recommendations regarding risk of overfishing and probability of adult biomass increase are similar to, but slightly less than, the TRAC recommendations from last year. The risk of overfishing increases rapidly with small changes in the 2014 quota for both rho adjusted models, so catches associated with 25% and 75% risk of overfishing are not presented (Figure 32). The change in adult biomass from 2014 to 2015 is close to a linear function of the 2014 catch, with potentially large decreases in both rho adjusted models for catches above 500 mt (Figure 33). The change in probability of biomass increase (or a 10% increase) from one to zero occurs over a relatively small range of 2014 catch (Figure 34). All these metrics indicate that small changes in the 2014 quota can have disproportionately large impacts on the ability to achieve management objectives.
Of particular importance in these projections is the assumption that the age 1 abundance in 2013 is set to the geometric mean of the estimated recruitment in the previous ten years. Tracing the cohort that is age 1 in 2012 through the deterministic projection table, it can be seen that the 2014 catch is only impacted a small amount, but the change in adult (age 3+) Jan-1 biomass from 2014 to 2015 can be influenced substantially by this assumption. Given the decline in recruitment observed in recent years (Table 15), a sensitivity analysis was conducted to determine the importance of the ten year geometric mean assumption for the 2013 age 1 value in the projection results. The age 12013 estimate was multiplied by a value ranging from zero to two in steps of 0.1 for the Split Series VPA results and the 2014 fishing mortality rate was set equal to $\mathrm{F}_{\mathrm{ref}}=0.25$ in the projections. The 2014 catch changed less than 100 mt while the relative change in median adult Jan-1 biomass from 2014 to 2015 was much more strongly impacted (Figure 35). For example, if the 2013 age 1 abundance was reduced by half, a value more consistent with the most recent recruitments, the relative change in median biomass would be a 0% increase instead of showing a 20% increase. This dependence of the change in biomass metric on the assumption made for the 2013 age 1 abundance should be considered when making catch advice decisions considering expected changes in biomass.

To achieve the TMGC objective of a fishing mortality rate below F reff catch in 2014 should be no more than 150 mt (Table 22). Taking into account both the probability of overfishing and the relative change in biomass, as was done by the TRAC last year, leads to the conclusion that catch in 2014 should be no greater than 400 mt (Table 22).

Rebuilding projections are required in the US when stocks are overfished. The rebuilding target for Georges Bank yellowtail flounder is a spawning stock biomass of $43,200 \mathrm{mt}$ (denoted $\mathrm{SSB}_{\text {MSY }}$). This value was set during GARM III (NEFSC 2008) based on using $\mathrm{F}_{40 \% \mathrm{MSP}}$ as a proxy
for $\mathrm{F}_{\text {MSY }}$ and conducting stochastic projections fishing at this rate for 100 years. The median SSB at the end of these 100 year projections was set as the SSB $_{\text {msy }}$ proxy. These projections depend on weights at age, fishery partial recruitment, maturity at age, natural mortality at age, and recruitment assumptions. If any of these data are changed, the resulting $\mathrm{SSB}_{\text {MSy }}$ proxy will change; however, these changes are typically assumed to be minor and the accepted value (currently $43,200 \mathrm{mt}$) is kept as the rebuilding target. The original rebuilding target year was 2014. However, the International Fisheries Clarification Act allowed extension of the rebuilding time. The New England Fisheries Management Council has set the new rebuilding end date as 2032. This is so far into the future that no rebuilding projections were considered. As the rebuilding date gets closer, the biomass reference point for this stock should be re-evaluated in light of current fishery, biological, and environmental conditions.

Age structure, fish growth, and spatial distribution reflect stock productivity. The current age structure indicates that very little rebuilding of ages 6 and older has occurred (Figure 36). This pattern holds for all the scenarios examined. The 2012 population abundance proportions at age are essentially the same for ages 1 through 4, indicating the recent poor recruitment. Far fewer older fish (6+) are estimated in the VPA in comparison with the population at equilibrium, which is inconsistent with the perception of recent low exploitation from the relative F calculations, but is consistent with the high total mortality estimates from all three surveys. Growth has been variable without strong trends, but condition factor has declined over the last decade. Spatial distribution patterns from the three groundfish surveys generally follow historical averages. Truncated age structure and reduced (but improving) condition factor indicate current resource productivity is lower than historical levels.

MANAGEMENT CONSIDERATIONS

This assessment is hampered by an inconsistency between the recent reduction in catch and the limited rebuilding of age structure in either the fishery or survey catches. The noisy character of the indices causes difficulty in tuning age structured models.

Although the Split Series VPA is used for management decisions, the mechanisms for the large changes in survey catchability are not easily explained. These changes in survey catchability are most appropriately thought of as aliasing an unknown mechanism that produces a better fitting model. The inability to plausibly explain these survey catchability changes causes increased uncertainty in this assessment relative to other assessments. Although the intention of the Split Series VPA was to eliminate the retrospective pattern, the pattern has re-emerged. Consideration of a number of alternative "fixes" to the retrospective pattern last year indicated that the catch advice was robust to how these inconsistencies in the data were treated and gave support to the management advice for this stock (Legault et al. 2012).
Consistent management by Canada and the US is required to ensure that conservation objectives are not compromised.
The change from previous assessments can be seen by examining the historical retrospective analysis, which plots the results from previous assessments instead of peeling back years from the current assessment (Figure 37). The historical retrospective analysis incorporates all data and model formulation changes as well as the number of years in the assessment. The change in the strength of the 2005 year-class (shown at age 1 in 2006 in the recruitment panel) contributes to the change in estimated spawning stock biomass, similar to the assessment retrospective analysis. However, the retrospective pattern is continuing, despite the reduction in the strength of the 2005 year-class in the last three assessments. So there is more than just a missed year-class that is generating the retrospective pattern.

The performance of the catch advice provided historically for this stock can be examined by comparing the expectation when the advice was provided with what the current assessment estimates for fishing mortality rates and biomass. These comparisons were kindly provided by Tom Nies (staff member of the New England Fishery Management Council, NEFMC) and are shown in the Appendix. The results demonstrate the impact of the retrospective pattern. Catch advice was provided which was expected to cause a fishing mortality rate of $\mathrm{F}_{\text {ref }}$ or lower. The actual catch was usually less than the quota, yet the current assessment estimates a fishing mortality rate much higher than Fref. This is due to the directional bias of the retrospective pattern. Since the biomass was estimated too high, the catch advice was set too high. Once the biomass is estimated at a lower amount, then that same catch has an associated fishing mortality rate well above the one originally used to set the catch advice. Changes in weight at age, partial recruitment to the fishery, and recruitment can also impact the accuracy of the projections. The past performance of catch advice should be considered when setting future catch quotas.

An additional perspective on the past performance of catch advice can be made by comparing the catch at age in weight for 2012 projected from previous assessments with the observed values measured for 2012 (Figure 38). The two projections from the 2011 and 2012 TRAC meetings are both from the Split Series model and do not make any retrospective adjustments. The current estimate is simply the catch at age in numbers multiplied by the catch weight at age. The 2011 projection shows more catch from ages $6+$ than for all ages combined from the current assessment. The 2012 projection has 51% of the catch in ages $5+$, while the current assessment has only 27% of the catch in ages $5+$. This difference between projected and observed age structure is due to whatever mechanism is causing the retrospective pattern and lies at the heart of the difficulties faced by this assessment.

LITERATURE CITED

Barkley, A.S., and S.X. Cadrin. 2012. Discard Mortality Estimation of Yellowtail Flounder using Reflex Action Mortality Predictors. Transactions of the American Fisheries Society 141: 638-644.

Begg, G.A., J.A. Hare, and D.D. Sheehan. 1999. The Role of Life History Parameters as Indicators of Stock Structure. Fish. Res. 43: 141-163.

Brooks, E.N., T.J. Miller, C.M. Legault, L. O'Brien, K.J Clark, S. Gavaris, and L. Van Eeckhaute. 2010. Determining Length-based Calibration Factors for Cod, Haddock, and Yellowtail Glounder. TRAC Ref. Doc. 2010/08.

Byrne, C.J., and J.R.S. Forrester. 1991. Relative Fishing Power of two Types of Trawl Doors. NEFSC Stock Assessment Workshop (SAW 12). 8 p.
Cadrin, S. 2005. Yellowtail flounder, Limanda ferruginea; pp. 15-18. In: Proceedings of a Workshop to Review and Evaluate the Design and Utility of Fish Mark-Recapture Projects in the Northeastern United States. NEFSC Ref. Doc. 05-02.

Cadrin, S.X. 2003. Stock Structure of Yellowtail Glounder off the Northeastern United States. University of Rhode Island Doctoral Dissertation. 148 p.
Cadrin, S.X. 2010. Interdisciplinary Analysis of Yellowtail Flounder Stock Structure off New England. Res. Fish. Sci. 18(3): 281-299.
Cadrin, S.X., and A.D. Westwood. 2004. The Use of Electronic Tags to Study Fish Movement: A Case Study with Yellowtail Flounder off New England. ICES CM 2004/K:81.

Conser, R.J., and J.E. Powers. 1990. Extensions of the ADAPT VPA Tuning Method Designed to Facilitate Assessment Work on Tuna and Swordfish Stocks. ICCAT Coll. Vol. Sci. Pap. 32: 461-467.

GARM (Groundfish Assessment Review Meeting). 2007. Report of the Groundfish Assessment Review Meeting (GARM) Part 1. Data Methods. R. O'Boyle [chair]. Available at: http://www.nefsc.noaa.gov/nefsc/saw/

Gavaris, S. 1988. An Ddaptive Framework for the Estimation of Population Size. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 88/29: 12 p.

ICES (International Council for the Exploration of the Sea). 2008. Report of the Working Group on Methods of Fish Stock Assessments (WGMG), 7-16 October 2008,Woods Hole, USA. ICES CM 2008/RMC:03. 147 pp.
ICJ (International Court of Justice). 1984. Case Concerning Delimitation of the Maritime Boundary in the Gulf of Maine Area (Canada/United States of America). International Court of Justice Reports 246.

Legault, C.M., H.H. Stone, and K.J. Clark. 2006. Stock Assessment of Georges Bank Yellowtail Flounder for 2006. TRAC Ref. Doc. 2006/01. 70p

Legault, C.M., H.H. Stone, and C. Waters. 2007. Stock Assessment of Georges Bank Yellowtail Flounder for 2007. TRAC Ref. Doc. 2007/05. 67p.

Legault, C., L. Alade, H. Stone, S. Gavaris, and C. Waters. 2008a. Georges Bank Yellowtail Flounder. In NEFSC (Northeast Fisheries Science Center). 2008. Assessment of 19 Northeast Groundfish Stocks through 2007: Report of the 3rd Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts, August 4-8, 2008. US Dep Commer, NOAA Fisheries, Northeast Fish. Sci. Cent. Ref. Doc. 08-15. 884 p + xvii.

Legault C.M., M. Palmer, and S. Wigley. 2008b. Uncertainty in Landings Allocation Algorithm at Stock Level is Insignificant. GARM III Biological Reference Points Meeting. WP 4.6.

Legault, C.M., L. Alade, and K.J. Clark. 2009. Stock Assessment of Georges Bank Yellowtail Flounder for 2009. TRAC Ref. Doc. 2009/03. 72 p.

Legault, C.M., L. Alade, and H.H. Stone. 2010. Stock Assessment of Georges Bank Yellowtail Flounder for 2010. TRAC Ref. Doc. 2010/06. 97 p.

Legault, C.M., L. Alade, and H.H. Stone. 2011. Stock Assessment of Georges Bank Yellowtail Flounder for 2011. TRAC Ref. Doc. 2011/01. 111 p.

Legault, C.M., L. Alade, H.H. Stone, and W.E. Gross. 2012. Stock Assessment of Georges Bank Yellowtail Flounder for 2012. TRAC Ref. Doc. 2012/02. 133 p.

Lux, F.E. 1963. Identification of New England Yellowtail Flounder Groups. Fish. Bull. 63: 1-10.
Lux, F.E. 1969. Length-weight Relationships of Six New England Flatfishes. Trans. Am. Fish. Soc. 98(4): 617-621.

Lux, F.E. and F.E. Nichy. 1969. Growth of Yellowtail Flounder, Limanda ferruginea (Storer), on Three New England Fishing Grounds. ICNAF Res. Bull. No. 6: 5-25.

Moseley, S.D. 1986. Age Structure, Growth, and Intraspecific Growth Variations of Yellowtail Flounder, Limanda ferruginea (Storer), on Four Northeastern United States Fishing Grounds. Univ. Mass. MS Theses.

NEFSC (Northeast Fisheries Science Center). 2002. Re-evaluation of Biological Reference Points for New England Groundfish. Northeast Fish. Sci. Cent. Ref. Doc. 02-04. 395 p.

NEFSC (Northeast Fisheries Science Center). 2008. Assessment of 19 Northeast Groundfish Stocks Through 2007: Report of the 3rd Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts, August 48, 2008. US Dep Commer, NOAA Fisheries, Northeast Fish. Sci. Cent. Ref. Doc. 08-15. 884 p + xvii.

Neilson, J.D., P. Hurley, and R.I. Perry. 1986. Stock Structure of Yellowtail Flounder in the Gulf of Maine Area: Implications for Management. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 86/64. 28 pp.

O’Brien, L. and T. Worcester. 2009. Proceedings of the Transboundary Resources Assessment Committee (TRAC): Gulf of Maine/Georges Bank Herring, Eastern Georges Bank Cod and Haddock, Georges Bank Yellowtail Flounder. Report of Meeting held 8-11 June 2009. TRAC Proc. Ser. 2009/01. 38 p.

Palmer, M. 2008. A Method to Apportion Landings with Unknown Area, Month and Unspecified Market Categories Among Landings with Similar Region and Fleet Characteristics. GARM III Biological Reference Points Meeting. WP 4.4. 9 p.

Parrack, M.L. 1986. A Method of Analyzing Catches and Abundance Indices from a Fishery. ICCAT Coll. Vol. Sci. Pap. 24: 209-221.

Rago, P., W. Gabriel, and M. Lambert. 1994. Georges Bank Yellowtail Glounder. NEFSC Ref. Doc. 94-20.

Royce, W.F., R.J. Buller, and E.D. Premetz. 1959. Decline of the Yellowtail Flounder (Limanda ferruginea) off New England. Fish. Bull. 146: 169-267.

Shark and Fishery Conservation Act of 2010. 2011. § 202. Public Law 111-348. (US Congress).
Stone, H.H. and S. Gavaris. 2005. An Approach to Estimating the Size and Age Composition of Discarded Yellowtail Flounder from the Canadian Scallop Fishery on Georges Bank, 1973-2003. TRAC Ref. Doc. 2005/05. 10p.

Stone, H.H. and C.M. Legault. 2005. Stock Assessment of Georges Bank (5Zhjmn) Yellowtail Flounder for 2005. TRAC Ref. Doc. 2005/04. 89 p.

Stone, H.H. and C. Nelson. 2003. Tagging Studies on Eastern Georges Bank Yellowtail Flounder. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/056. 21p.

Stone, H.H. and P. Perley. 2002. An Evaluation of Georges Bank Yellowtail Flounder Age Determination Based on Otolith Thin-sections. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/076. 32p.

TMGC (Transboundary Management Guidance Committee). 2002. Development of a Sharing Allocation Proposal for Transboundary Resources of Cod, Haddock and Yellowtail Flounder on Georges Bank. DFO Fish. Manage. Reg. Rep. 2002/01. 59 p.

TMGC (Transboundary Management Guidance Committee). 2003. Guidance Document 2003/01. 7 p.
TRAC (Transboundary Resources Assessment Committee). 2005. Proceedings of the Transboundary Resources Assessment Committee (TRAC) Benchmark Review of Stock Assessment Models for the Georges Bank Yellowtail Flounder Stock. S. Gavaris, R.O'Boyle, and W. Overholtz [eds.]. TRAC Proc. Ser. 2005/01. 65p.

Van Eeckhaute, L., S. Gavaris, and H.H. Stone. 2005. Estimation of, Cod, Haddock and Yellowtail Flounder Discards for the Canadian Georges Bank Scallop Fishery from 1960 to 2004. TRAC Ref. Doc. 2005/02. 18p.

Van Eeckhaute L, J. Sameoto, and A. Glass. 2010. Discards of Atlantic Cod, Haddock and Yellowtail Flounder from the 2009 Canadian Scallop Fishery on Georges Bank. TRAC Ref. Doc. 2010/10. 7p.

Walsh, S.J and J. Burnett. 2001. Report of the Canada-United States Yellowtail Flounder Age Reading Workshop, November 28-30, 2000, St. John's Newfoundland. NAFO SCR Doc. 01/54. 57p.

Walsh, S.J. and M.J. Morgan. 2004. Observations of Natural Behavior of Yellowtail Flounder Derived from Data Storage Tags. ICES J. Mar. Sci. 61: 1151-1156.

Wigley S.E., P. Hersey, and J.E. Palmer. 2007a. A Description of the Allocation Procedure Applied to the 1994 to Present Commercial Landings Data. GARM III Data Meeting. WP A. 1.

Wigley S.E., P.J. Rago, K.A. Sosebee, and D.L. Palka. 2007b. The Analytic Component to the Standardized Bycatch Reporting Methodology Omnibus Amendment: Sampling Design, and Estimation of Precision and Accuracy ($2^{\text {nd }}$ Edition). NEFSC Ref. Doc. 07-09. 156 p.

Table 1. Annual catch (mt) of Georges Bank yellowtail flounder.

Year	US Landings	US Discards	Canada Landings	Canada Discards	Other Landings	Total Catch	$\begin{array}{r} \% \\ \text { discards } \end{array}$
1935	300	100	0	0	0	400	25\%
1936	300	100	0	0	0	400	25\%
1937	300	100	0	0	0	400	25\%
1938	300	100	0	0	0	400	25\%
1939	375	125	0	0	0	500	25\%
1940	600	200	0	0	0	800	25\%
1941	900	300	0	0	0	1200	25\%
1942	1575	525	0	0	0	2100	25\%
1943	1275	425	0	0	0	1700	25\%
1944	1725	575	0	0	0	2300	25\%
1945	1425	475	0	0	0	1900	25\%
1946	900	300	0	0	0	1200	25\%
1947	2325	775	0	0	0	3100	25\%
1948	5775	1925	0	0	0	7700	25\%
1949	7350	2450	0	0	0	9800	25\%
1950	3975	1325	0	0	0	5300	25\%
1951	4350	1450	0	0	0	5800	25\%
1952	3750	1250	0	0	0	5000	25\%
1953	2925	975	0	0	0	3900	25\%
1954	2925	975	0	0	0	3900	25\%
1955	2925	975	0	0	0	3900	25\%
1956	1650	550	0	0	0	2200	25\%
1957	2325	775	0	0	0	3100	25\%
1958	4575	1525	0	0	0	6100	25\%
1959	4125	1375	0	0	0	5500	25\%
1960	4425	1475	0	0	0	5900	25\%
1961	4275	1425	0	0	0	5700	25\%
1962	5775	1925	0	0	0	7700	25\%
1963	10990	5600	0	0	100	16690	34\%
1964	14914	4900	0	0	0	19814	25\%
1965	14248	4400	0	0	800	19448	23\%
1966	11341	2100	0	0	300	13741	15\%
1967	8407	5500	0	0	1400	15307	36\%
1968	12799	3600	122	0	1800	18321	20\%
1969	15944	2600	327	0	2400	21271	12\%
1970	15506	5533	71	0	300	21410	26\%
1971	11878	3127	105	0	500	15610	20\%
1972	14157	1159	8	515	2200	18039	9\%
1973	15899	364	12	378	300	16953	4\%
1974	14607	980	5	619	1000	17211	9\%
1975	13205	2715	8	722	100	16750	21\%
1976	11336	3021	12	619	0	14988	24\%
1977	9444	567	44	584	0	10639	11\%
1978	4519	1669	69	687	0	6944	34\%

Table 1. (Continued).

	US	US Year	Canada Landings	Canada Discards	Other Landings	Total Catch	$\%$ discards
1979	5475	720	19	722	0	6935	21%
1980	6481	382	92	584	0	7539	13%
1981	6182	95	15	687	0	6979	11%
1982	10621	1376	22	502	0	12520	15%
1983	11350	72	106	460	0	11989	4%
1984	5763	28	8	481	0	6280	8%
1985	2477	43	25	722	0	3267	23%
1986	3041	19	57	357	0	3474	11%
1987	2742	233	69	536	0	3580	21%
1988	1866	252	56	584	0	2759	30%
1989	1134	73	40	536	0	1783	34%
1990	2751	818	25	495	0	4089	32%
1991	1784	246	81	454	0	2564	27%
1992	2859	1873	65	502	0	5299	45%
1993	2089	1089	682	440	0	4300	36%
1994	1431	148	2139	440	0	4158	14%
1995	360	43	464	268	0	1135	27%
1996	743	96	472	388	0	1700	28%
1997	888	327	810	438	0	2464	31%
1998	1619	482	1175	708	0	3985	30%
1999	1818	577	1971	597	0	4963	24%
2000	3373	694	2859	415	0	7341	15%
2001	3613	78	2913	815	0	7419	12%
2002	2476	53	2642	493	0	5663	10%
2003	3236	410	2107	809	0	6562	19%
2004	5837	460	96	422	0	6815	13%
2005	3161	414	30	246	0	3851	17%
2006	1196	384	25	504	0	2109	42%
2007	1058	493	17	94	0	1662	35%
2008	937	409	41	117	0	1504	35%
2009	959	759	5	84	0	1806	47%
2010	654	289	17	200	0	1160	42%
2011	904	192	22	50	0	1169	21%
2012	443	188	46	45	0	722	32%

Table 2a. Derivation of Georges Bank yellowtail flounder US discards ($m t$) calculated as the product of the ratio estimator (d:k - discard to kept all species on a trip in a stratum) and total kept (K_all) in each stratum. Coefficient of variation (CV) provided by gear and year.

Year	Half	Small Mesh Trawl					Large Mesh Trawl					Scallop Dredge					$\begin{gathered} \text { Total } \\ \mathrm{D}(\mathrm{mt}) \end{gathered}$
		ntrips	d:k	Il (mt)	D (mt)	CV	ntrips	d:k	lll (mt)	D (mt)	CV	ntrips	d:k	all (mt)	D (mt)	CV	
1994	1	1	0.0000	1090	0		16	0.0013	7698	10		1	0.0001	2739	0		11
	2	1	0.0000	1316	0		6	0.0199	6445	128		4	0.0039	2531	10		138
1994 Total		2			0	0\%	22			138	150\%	5			10	6\%	148
1995	1	1	0.0000	2331	0		27	0.0023	6256	14		1	0.0017	522	1		15
	2	1	0.0000	919	0		10	0.0055	3844	21		2	0.0017	3634	6		28
1995 Total		2			0	0\%	37			36	70\%	3			7	20\%	43
1996	1	2	0.0000	3982	0		12	0.0066	7094	47		2	0.0025	2132	5		52
	2	1	0.0000	1470	0		1	0.0005	7269	4		2	0.0081	4960	40		44
1996 Total		3			0	0\%	13			51	30\%	4			45	0\%	96
1997	1	1	0.0000	2102	0		3	0.0247	8215	203		3	0.0048	4044	19		222
	2			1391	0		3	0.0019	4098	8		3	0.0250	3903	97		105
1997 Total		1			0	0\%	6			211	22\%	6			117	74\%	327
1998	1	1	0.0000	1808	0		3	0.0219	8059	177		2	0.0065	3849	25		202
	2			3111	0		2	0.0015	5611	8		3	0.0551	4945	272		280
1998 Total		1			0	0\%	5			185	66\%	5			297	46\%	482
1999	1	1	0.0000	3868	0		2	0.0010	9391	9		4	0.0152	8806	134		143
	2			2638	0		5	0.0005	4755	2		15	0.0176	24524	432		434
1999 Total		1			0	0\%	7			11	67\%	19			566	13\%	577
2000	1	2	0.0000	3665	0		6	0.0014	10869	15		25	0.0457	8320	380		395
	2	2	0.0272	1665	0		11	0.0015	6421	10		154	0.0181	15991	289		299
2000 Total		4			0	90\%	17			25	71\%	179			669	12\%	694
2001	1	5	0.0045	2347	0		13	0.0038	13047	49		16	0.0019	7728	14		63
	2	2	0.0000	3461	0		13	0.0002	6716	1			0.0019	7162	13		15
2001 Total		7			0	105\%	26			50	51\%	16			28	7\%	78
2002	1	1	0.0000	2420	0		11	0.0010	14525	14			0.0035	2074	7		21
	2	6	0.0001	2243	0		37	0.0015	6196	10		4	0.0035	6134	22		31
2002 Total		7			0	79\%	48			24	42\%	4			29	27\%	53
2003	1	7	0.0001	2350	0		61	0.0064	15264	97			0.0149	9612	143		241
	2	7	0.0002	4764	1		46	0.0021	8438	18		2	0.0149	10083	150		169
2003 Total		14			1	95\%	107			115	39\%	2			293	0\%	410
2004	1	5	0.0005	2504	1		68	0.0078	14130	111		2	0.0001	2942	0		112
	2	12	0.0215	2508	54		86	0.0179	11958	214		28	0.0058	13885	81		348
2004 Total		17			55	62\%	154			324	20\%	30			81	21\%	460

Table 2a. (Continued).

Year	Half	Small Mesh Trawl					Large Mesh Trawl					Scallop Dredge					$\begin{array}{r} \text { Total } \\ \hline \mathrm{D}(\mathrm{mt}) \\ \hline \end{array}$
		ntrips	d:k	K_all (mt)	D (mt)	CV	ntrips	d:k	(mt)	D (mt)	CV	ntrips	d:k	all (mt)	D (mt)	CV	
2005	1	41	0.0206	1448	30		369	0.0092	9935	92		8	0.0032	8217	27		148
	2	36	0.0068	3207	22		200	0.0094	8988	85		55	0.0041	38751	159		266
2005 Total		77			52	28\%	569			177	12\%	63			186	20\%	414
2006	1	11	0.0004	824	0		182	0.0074	7008	52		13	0.0015	20457	30		83
	2	6	0.0127	1995	25		121	0.0111	4963	55		54	0.0056	39378	221		301
2006 Total		17			26	95\%	303			107	14\%	67			251	19\%	384
2007	1	8	0.0016	3521	5		148	0.0166	8392	139		17	0.0031	12737	39		184
	2	4	0.0438	2377	104		156	0.0237	5236	124		42	0.0036	22445	81		309
2007 Total		12			110	86\%	304			264	10\%	59			120	24\%	493
2008	1	4	0.0000	1557	0		184	0.0224	6966	156		20	0.0066	6322	42		198
	2	4	0.0223	1145	26		213	0.0144	6904	99		22	0.0079	10951	86		211
2008 Total		8			26	264\%	397			255	8\%	42			128	15\%	409
2009	1	10	0.0000	1158	0		180	0.0339	8008	271		36	0.0079	18403	146		417
	2	13	0.0157	1546	24		162	0.0364	8066	294		22	0.0013	18287	24		342
2009 Total		23			24	73\%	342			565	13\%	58			170	17\%	759
2010	1	17	0.0035	2341	8		181	0.0222	9814	218		3	0.0041	1352	5		231
	2	17	0.0106	2079	22		130	0.0064	5097	33		5	0.0005	6000	3		58
2010 Total		34			30	39\%	311			250	17\%	8			8	48\%	289
2011	1	12	0.0049	2504	12		163	0.0040	7807	31		2	0.0133	2920	39		83
	2	18	0.0094	2162	20		147	0.0050	4735	24		68	0.0017	39557	65		109
2011 Total		30			33	38\%	310			55	10\%	70			104	53\%	192
2012	1	8	0.0145	1686	24		117	0.0037	4997	18		24	0.0011	15118	17		59
	2	2	0.0001	1713	0		121	0.0017	3861	7		78	0.0036	34008	122		129
2012 Total		10			24	89\%	238			25	12\%	102			139	23\%	188

Table 2b. Prorated discards (kg) and fishing effort (hr) for Georges Bank yellowtail flounder from International Observer Program (IOP) trips of the Canadian scallop fishery in 2012.

IOP Trip	Board Date	Proration			Discards (kg)		Effort (hr)
		Number of Dredges		Proportion			
		Observed	Total		Observed	Prorated	
J11-0593	12/5/2011	588	1188	0.49	27	55	217
J11-0471	12/7/2011	641	1277	0.50	5	10	235
J12-0046/48	1/28/2012	626	1221	0.51	11	21	238
J12-0019	2/14/2012	684	1367	0.50	238	476	285
J12-0074	3/7/2012	609	1240	0.49	640	1303	245
J12-0105	3/16/2012	196	366	0.54	589	1100	98
J12-0154	4/10/2012	143	234	0.61	3	5	17
J12-0121	4/12/2012	315	635	0.50	209	421	90
J12-0169	5/1/2012	188	294	0.64	49	77	41
J12-0141	5/11/2012	401	811	0.49	188	380	117
J12-0187	5/28/2012	226	390	0.58	24	41	77
J12-0315	6/9/2012	559	1143	0.49	244	499	175
J12-0341	7/9/2012	576	1140	0.51	152	301	181
J12-0219	7/17/2012	326	648	0.50	86	171	127
J12-0420	8/13/2012	196	382	0.51	41	80	119
J12-0426	8/21/2012	699	1337	0.52	140	268	196
J12-0475	9/19/2012	277	573	0.48	58	120	90
J12-0476	9/20/2012	775	1513	0.51	81	158	202
J12-0528	10/5/2012	618	1275	0.48	284	586	211
J12-0543	10/17/2012	296	498	0.59	50	84	100
J12-0494	11/7/2012	415	809	0.51	129	251	148
J12-0496	11/11/2012	655	1195	0.55	62	113	217

Table 2c. Three month moving-average (ma) discard rate (kg/hr), standardized fishing effort (hr), and discards (mt) of Georges Bank yellowtail flounder from the Canadian scallop fishery in 2012. Movingaverage calculations include trips from Dec. 2011.

Year	Month	Monthly Prorated Discards (kg)	Monthly Effort (hr)	3-month ma		ma Discards (mt)	Cum. Annual Discards (mt)
				Discard Rate (kg/hr)	***Effort (hr)		
*2011	Dec	65	452				
2012	**Jan	0	0	0.576	30	0	0
	Feb	497	523	3.351	538	2	2
	Mar	2403	343	3.422	938	3	5
	Apr	426	107	5.414	2400	13	18
	May	457	158	2.758	3457	10	28
	Jun	540	252	2.048	2579	5	33
	Jul	472	308	1.555	3104	5	38
	Aug	348	315	1.200	2751	3	41
	Sep	278	292	1.411	1085	2	42
	Oct	670	311	1.356	1115	2	44
	Nov	365	365	1.531	723	1	45
	**Dec	0	0	0.999	312	0	45

*includes trips from Dec. 2011 for moving-average calculations.
** No observed trips in Jan. or Dec.; assumed discards and effort were same as Dec. 2011 and Nov. 2012, respectively.
***Effort hours are standardized to freezer-trawler hour equivalents
Table 3. Comparison of US and catch ($m t$) in calendar year 2012 estimated by the US quota monitoring system (within year) and the values used in the assessment (end of year).

	Jan-Jun	Jul-Dec	All Months
Quota Monitoring (mt)	402	243	644
Assessment (mt)	388	243	631
Diff (QM-Assess) (mt)	13	0	13
Rel Diff (Diff/Assess)	3%	0%	2%

Table 4. Port samples used in the estimation of landings at age for Georges Bank yellowtail flounder in 2012 from US and Canadian sources. Note the Canadian port samples include at-sea observer length measurements for 2012.

US	Landings (metric tons)					Port Sampling (Number of Lengths or Ages)						
	Market Category					Market Category				Total	Lengths per 100mt	Number of Ages
Half	Uncl.	Large	Small	Medium	Total	Uncl.	Large	Small	Medium			
1	16	223	89	0	329		878	563		1441		
2	3	82	28	0	114		1665	1187		2852		
Total	19	305	118	1	443		2543	1750		4293	969	898
Canada Quarter					Total					Total	Lengths per 100mt	Number of Ages
1												
2					5							
3					16					2956		
4					25					8620		
Total					46					11576	25165	0

Table 5. Coefficient of variation for US landings at age of Georges Bank yellowtail flounder by year.

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6+
1994		57%	6%	14%	27%	41%
1995		27%	11%	13%	22%	40%
1996		23%	7%	15%	26%	60%
1997		17%	11%	8%	30%	35%
1998		64%	31%	16%	36%	30%
1999	97%	21%	9%	25%	33%	34%
2000		11%	9%	11%	20%	32%
2001		17%	11%	10%	22%	48%
2002	76%	15%	11%	11%	15%	22%
2003		16%	8%	9%	11%	16%
2004		53%	8%	6%	9%	11%
2005		11%	4%	6%	12%	16%
2006		10%	5%	6%	6%	13%
2007	103%	10%	5%	6%	14%	19%
2008		17%	4%	6%	17%	33%
2009		14%	4%	4%	6%	23%
2010		20%	5%	4%	6%	14%
2011	98%	19%	6%	4%	7%	15%
2012		23%	10%	6%	12%	45%

Table 6. Total catch at age including discards (number in 000s of fish) for Georges Bank yellowtail flounder. Note the 2010 and 2011 values have changed slightly (<2\%) from last year's assessment.

Year	Age												Total
	1	2	3	4	5	6	7	8	9	10	11	12	
1973	359	5175	13565	9473	3815	1285	283	55	23	4	0	0	34037
1974	2368	9500	8294	7658	3643	878	464	106	71	0	0	0	32982
1975	4636	26394	7375	3540	2175	708	327	132	26	14	0	0	45328
1976	635	31938	5502	1426	574	453	304	95	54	11	2	0	40993
1977	378	9094	10567	1846	419	231	134	82	37	10	0	0	22799
1978	9962	3542	4580	1914	540	120	45	16	17	7	6	0	20748
1979	321	10517	3789	1432	623	167	95	31	27	1	3	0	17006
1980	318	3994	9685	1538	352	96	5	11	1	0	0	0	16000
1981	107	1097	5963	4920	854	135	5	2	3	0	0	0	13088
1982	2164	18091	7480	3401	1095	68	20	7	0	0	0	0	32327
1983	703	7998	16661	2476	680	122	13	16	4	0	0	0	28672
1984	514	2018	4535	5043	1796	294	47	39	0	0	0	0	14285
1985	970	4374	1058	818	517	73	8	0	0	0	0	0	7817
1986	179	6402	1127	389	204	80	17	15	0	1	0	0	8414
1987	156	3284	3137	983	192	48	38	26	25	0	0	0	7890
1988	499	3003	1544	846	227	24	26	3	0	0	0	0	6172
1989	190	2175	1121	428	110	18	12	0	0	0	0	0	4054
1990	231	2114	6996	978	140	21	6	0	0	0	0	0	10485
1991	663	147	1491	3011	383	67	4	0	0	0	0	0	5767
1992	2414	9167	2971	1473	603	33	7	1	1	0	0	0	16671
1993	5233	1386	3327	2326	411	84	5	1	0	0	0	0	12773
1994	71	1336	6302	1819	477	120	20	3	0	0	0	0	10150
1995	47	313	1435	879	170	25	10	1	0	0	0	0	2880
1996	101	681	2064	885	201	13	10	5	0	0	0	0	3960
1997	82	1132	1832	1857	378	39	43	7	1	0	0	0	5371
1998	169	1991	3388	1885	1121	122	18	3	0	3	0	0	8700
1999	60	2753	4195	1548	794	264	32	4	1	0	0	0	9651
2000	132	3864	5714	3173	826	420	66	38	4	0	0	0	14237
2001	176	2884	6956	2893	1004	291	216	13	4	0	0	0	14438
2002	212	4169	3446	1916	683	269	144	57	10	6	0	0	10911
2003	160	3919	4710	2320	782	282	243	96	47	23	2	0	12585
2004	61	1152	3184	3824	1970	889	409	78	74	18	2	0	11661
2005	60	1579	4031	1707	392	132	37	16	0	0	0	0	7954
2006	152	1293	1626	947	364	124	66	14	7	3	0	0	4596
2007	51	1491	1705	662	136	44	9	2	0	0	0	0	4101
2008	29	493	1903	855	125	17	8	0	0	0	0	0	3430
2009	17	284	1266	1361	516	59	10	4	0	0	0	0	3517
2010	2	139	643	890	445	87	10	2	0	0	0	0	2218
2011	11	165	773	902	309	67	8	1	0	0	0	0	2235
2012	12	107	368	577	240	38	4	4	0	0	0	0	1349

Table 7. Mean weight at age (kg) for the total catch including US and Canadian discards, for Georges Bank yellowtail flounder. Note the 2010 and 2011 values have changed slightly (<1\%) from last year's assessment.

	Age											
Year	1	2	3	4	5	6	7	8	9	10	11	12
1973	0.101	0.348	0.462	0.527	0.603	0.690	1.063	1.131	1.275	1.389	1.170	
1974	0.115	0.344	0.496	0.607	0.678	0.723	0.904	1.245	1.090		1.496	1.496
1975	0.113	0.316	0.489	0.554	0.619	0.690	0.691	0.654	1.052	0.812		
1976	0.108	0.312	0.544	0.635	0.744	0.813	0.854	0.881	1.132	1.363	1.923	
1977	0.116	0.342	0.524	0.633	0.780	0.860	1.026	1.008	0.866	0.913		
1978	0.102	0.314	0.510	0.690	0.803	0.903	0.947	1.008	1.227	1.581	0.916	
1979	0.114	0.329	0.462	0.656	0.736	0.844	0.995	0.906	1.357	1.734	1.911	
1980	0.101	0.322	0.493	0.656	0.816	1.048	1.208	1.206	1.239			
1981	0.122	0.335	0.489	0.604	0.707	0.821	0.844	1.599	1.104			
1982	0.115	0.301	0.485	0.650	0.754	1.065	1.037	1.361				
1983	0.140	0.296	0.441	0.607	0.740	0.964	1.005	1.304	1.239			
1984	0.162	0.239	0.379	0.500	0.647	0.743	0.944	1.032				
1985	0.181	0.361	0.505	0.642	0.729	0.808	0.728					
1986	0.181	0.341	0.540	0.674	0.854	0.976	0.950	1.250		1.686		
1987	0.121	0.324	0.524	0.680	0.784	0.993	0.838	0.771	0.809			
1988	0.103	0.328	0.557	0.696	0.844	1.042	0.865	1.385				
1989	0.100	0.327	0.520	0.720	0.866	0.970	1.172	1.128				
1990	0.105	0.290	0.395	0.585	0.693	0.787	1.057					
1991	0.121	0.237	0.369	0.486	0.723	0.850	1.306					
1992	0.101	0.293	0.365	0.526	0.651	1.098	1.125	1.303	1.303			
1993	0.100	0.285	0.379	0.501	0.564	0.843	1.130	1.044				
1994	0.193	0.260	0.353	0.472	0.621	0.780	0.678	1.148				
1995	0.174	0.275	0.347	0.465	0.607	0.720	0.916	0.532				
1996	0.119	0.276	0.407	0.552	0.707	0.918	1.031	1.216				
1997	0.214	0.302	0.408	0.538	0.718	1.039	0.827	1.136	1.113			
1998	0.178	0.305	0.428	0.546	0.649	0.936	1.063	1.195		1.442		
1999	0.202	0.368	0.495	0.640	0.755	0.870	1.078	1.292	1.822			
2000	0.229	0.383	0.480	0.615	0.766	0.934	1.023	1.023	1.296			
2001	0.251	0.362	0.460	0.612	0.812	1.011	1.024	1.278	1.552			
2002	0.282	0.381	0.480	0.665	0.833	0.985	1.100	1.286	1.389	1.483		
2003	0.228	0.359	0.474	0.653	0.824	0.957	1.033	1.144	1.267	1.418	1.505	
2004	0.211	0.292	0.438	0.585	0.726	0.883	1.002	1.192	1.222	1.305	1.421	
2005	0.119	0.341	0.447	0.597	0.763	0.965	0.993	1.198	1.578	1.578		
2006	0.100	0.310	0.415	0.557	0.761	0.917	1.066	1.185	1.263	1.224	1.599	
2007	0.154	0.290	0.409	0.542	0.784	0.968	1.108	1.766				
2008	0.047	0.302	0.415	0.533	0.675	0.882	1.130					
2009	0.155	0.328	0.434	0.538	0.699	0.879	1.050	1.328				
2010	0.174	0.323	0.432	0.519	0.661	0.777	0.997	1.175				
2011	0.128	0.337	0.461	0.553	0.646	0.739	0.811	0.851				
2012	0.185	0.339	0.452	0.555	0.671	0.792	0.934	0.797				

Table 8. Length based calibration factors for yellowtail flounder (see Brooks et al. 2010 for details of derivation). Numbers at length from Henry B. Bigelow tows should be divided by the calibration factor in the corresponding length bin. It is recommended that these calibration factors be applied with all 6 digits to the right of the decimal point.

Length	Calibration
≤ 18	3.857302
19	3.857302
20	3.857302
21	3.621597
22	3.385892
23	3.150187
24	2.914482
25	2.678777
26	2.443072
27	2.207367
28	1.971662
29	1.971657
≥ 30	1.971657

Table 9. DFO spring survey indices of minimum swept area abundance for Georges Bank yellowtail flounder in thousands of fish and thousands of metric tons, along with the coefficient of variation (CV) for the biomass estimates.

Year	Age1	Age2	Age3	Age4	Age5	Age6+	B(000 mt)	CV(B)
1987	75.2	751.1	1238.5	309.7	54.9	30.9	1.250	27%
1988	0.0	1116.5	801.9	383.6	174.9	14.8	1.235	22%
1989	71.8	645.8	383.2	185.2	41.8	14.1	0.471	26%
1990	0.0	1500.9	2281.1	575.0	131.3	8.6	1.513	22%
1991	15.4	539.6	745.8	2364.1	330.3	9.1	1.758	33%
1992	34.8	6942.1	2312.0	622.4	219.8	18.8	2.475	16%
1993	49.4	1528.8	2568.8	2562.9	557.5	81.8	2.642	15%
1994	0.0	3808.4	2178.6	1890.1	491.4	130.0	2.753	23%
1995	132.0	786.5	2737.4	1600.8	406.6	63.6	2.027	20%
1996	280.5	4491.0	5769.2	3399.8	726.5	77.2	5.303	22%
1997	13.6	7849.2	8742.1	10293.6	2543.2	421.5	13.293	23%
1998	561.7	2094.3	3085.9	2725.6	1250.4	351.2	4.293	24%
1999	99.8	13118.5	13101.2	4822.9	3364.5	1383.5	17.666	32%
2000	6.8	8655.8	17256.5	12100.9	3187.6	2319.8	19.949	25%
2001	183.3	12511.6	26489.4	8368.0	2881.0	1507.2	22.158	42%
2002	55.5	7522.3	19503.3	7693.6	3491.7	1781.4	20.699	31%
2003	56.3	7476.4	15480.7	6971.1	2151.0	1249.9	16.249	32%
2004	20.6	2263.5	10225.3	5788.7	1429.2	890.5	9.054	31%
2005	377.3	1007.5	17581.9	12931.4	3581.9	983.8	13.357	53%
2006	391.5	3076.8	11696.4	4132.7	515.4	149.4	6.579	44%
2007	108.9	7646.4	17423.7	8048.5	1439.1	156.2	13.344	43%
2008	0.0	30382.5	107131.7	35919.3	5067.8	34.5	67.319	94%
2009	13.4	5370.4	86753.6	73553.8	12513.9	2996.1	72.044	79%
2010	0.0	307.6	5906.1	13170.2	2221.7	804.5	9.138	29%
2011	13.9	409.3	3831.5	5159.9	1069.5	205.8	3.830	29%
2012	27.9	405.2	5183.7	7183.4	1946.9	284.9	5.620	36%
2013	51.0	80.9	522.5	788.6	380.1	88.2	0.698	33%

Table 10. NEFSC spring survey indices of minimum swept area abundance for Georges Bank yellowtail flounder in thousands of fish and thousands of metric tons, along with the coefficient of variation (CV) for the biomass estimates.

Year	Age1	Age2	Age3	Age4	Age5	Age6+	B (000 mt)	$\mathrm{CV}(\mathrm{B})$
1968	181.2	3227.3	3474.3	295.2	70.9	300.8	2.709	23\%
1969	1046.8	9067.8	10793.9	3081.4	1305.2	678.2	10.842	29\%
1970	78.4	4364.8	5853.3	2350.9	553.0	302.0	4.994	15\%
1971	810.4	3412.9	4671.6	3202.9	757.1	310.6	4.483	19\%
1972	137.0	6719.3	6843.1	3595.8	1093.7	232.0	6.266	21\%
1973	1882.9	3184.3	2309.4	1036.7	399.4	210.2	2.852	17\%
1974	308.2	2168.5	1795.5	1225.0	336.9	273.8	2.640	18\%
1975	409.2	2918.0	809.1	262.6	201.5	86.3	1.626	22\%
1976	1008.4	4259.0	1216.0	302.4	191.2	108.4	2.206	17\%
1977	0.0	654.0	1097.7	363.7	81.9	12.8	0.970	31\%
1978	912.2	778.4	494.4	213.9	25.7	7.7	0.720	19\%
1979	394.0	1956.8	395.2	328.3	58.7	88.7	1.234	21\%
1980	55.3	4528.6	5617.2	460.6	55.0	35.3	4.325	35\%
1981	11.4	995.9	1724.2	698.9	206.9	56.9	1.903	33\%
1982	44.1	3656.5	1096.5	992.5	444.5	88.3	2.426	20\%
1983	0.0	1810.0	2647.8	514.4	119.6	237.3	2.564	30\%
1984	0.0	90.3	806.0	837.9	810.4	236.5	1.598	43\%
1985	106.4	2134.2	254.4	273.4	143.4	0.0	0.959	51\%
1986	26.6	1753.0	282.6	54.6	132.9	53.2	0.823	31\%
1987	26.6	73.3	133.0	129.3	51.0	53.2	0.319	37\%
1988	75.5	266.9	355.2	234.7	193.2	26.6	0.549	26\%
1989	45.2	391.3	737.7	281.0	59.3	43.5	0.708	26\%
1990	0.0	63.7	1074.7	358.4	112.2	100.8	0.678	32\%
1991	422.5	0.0	246.9	665.1	255.5	20.0	0.612	25\%
1992	0.0	1987.7	1840.7	621.8	160.0	16.7	1.520	46\%
1993	44.7	281.1	485.8	307.9	26.0	0.0	0.468	26\%
1994	0.0	602.3	614.7	343.6	140.4	38.7	0.641	22\%
1995	39.0	1144.6	4670.4	1441.7	621.5	9.5	2.504	60\%
1996	24.4	958.1	2548.6	2621.8	591.6	56.2	2.769	31\%
1997	18.2	1134.5	3623.1	3960.7	682.3	129.7	4.231	24\%
1998	0.0	2020.1	1022.2	1123.4	737.1	339.6	2.256	22\%
1999	48.7	4606.3	10501.7	2640.5	1575.2	756.3	9.033	42\%
2000	177.3	4677.6	7440.5	2828.5	789.2	508.4	6.499	23\%
2001	0.0	2246.7	6370.5	2340.0	469.2	439.7	4.859	33\%
2002	182.4	2341.5	11971.1	3958.4	1690.3	845.4	9.282	26\%
2003	196.1	4241.4	6564.9	2791.9	428.6	836.9	6.524	40\%
2004	47.1	957.3	2114.4	659.9	247.7	263.8	1.835	27\%
2005	0.0	1953.5	4931.0	2332.7	261.8	111.4	3.307	33\%
2006	493.5	907.8	3419.2	2112.7	307.7	79.8	2.349	19\%
2007	87.1	4899.7	6079.1	2762.3	540.0	125.2	4.563	22\%
2008	0.0	2206.7	4921.5	1681.1	300.3	26.6	3.152	22\%
2009	218.8	546.4	6978.7	4456.8	964.1	186.3	4.619	22\%
2010	16.5	662.8	5181.0	8057.2	2584.0	613.9	5.662	27\%
2011	26.9	236.6	3116.0	3512.9	914.1	100.6	2.419	23\%
2012	92.7	530.1	3476.9	6141.4	1563.6	180.3	3.878	49\%
2013	46.4	442.0	928.0	1103.9	725.8	258.5	1.071	21\%

Table 11. NEFSC fall survey indices of minimum swept area abundance for Georges Bank yellowtail flounder in thousands of fish and thousands of metric tons, along with the coefficient of variation (CV) for the biomass estimates. (Note: These surveys are assumed to occur at the midpoint of the year.)

Year	Age1	Age2	Age3	Age4	Age5	Age6+	B (000 mt)	CV(B)
1963.5	14289.1	7663.6	10897.1	1804.0	480.5	532.7	12.413	19\%
1964.5	1671.3	9517.3	7097.2	5791.2	2634.2	473.3	13.168	40\%
1965.5	1162.1	5537.0	5811.9	3427.8	1600.9	250.6	8.852	32\%
1966.5	11320.3	2184.4	1635.3	871.9	98.3	0.0	3.813	32\%
1967.5	8720.8	9131.0	2646.7	1006.7	299.3	132.3	7.445	26\%
1968.5	11328.3	11702.5	5588.9	722.7	936.8	56.4	10.227	23\%
1969.5	9656.7	10601.8	5064.1	1757.4	327.0	447.7	9.519	26\%
1970.5	4474.9	4981.2	3051.2	1894.7	438.2	77.8	4.833	28\%
1971.5	3520.0	6770.9	4769.9	2183.8	483.4	289.1	6.178	21\%
1972.5	2416.9	6332.8	4682.3	2032.9	592.1	331.7	6.142	28\%
1973.5	2420.4	5336.0	4954.5	2857.4	1181.2	599.9	6.299	30\%
1974.5	4486.7	2779.5	1471.6	1029.1	444.3	368.1	3.561	19\%
1975.5	4548.6	2437.3	851.7	555.2	324.4	61.1	2.257	16\%
1976.5	333.5	1863.9	460.3	113.6	118.5	97.3	1.463	25\%
1977.5	906.7	2147.1	1572.8	615.4	102.3	105.7	2.699	20\%
1978.5	4620.6	1243.3	757.2	399.2	131.6	34.9	2.274	20\%
1979.5	1282.0	2008.5	253.7	116.7	134.3	108.6	1.450	29\%
1980.5	743.6	4970.0	5912.0	662.0	212.3	250.9	6.412	22\%
1981.5	1548.2	2279.4	1592.8	570.5	76.4	52.8	2.500	32\%
1982.5	2353.3	2120.3	1543.4	410.4	86.6	0.0	2.203	30\%
1983.5	105.7	2216.4	1858.5	495.7	29.9	47.7	2.068	22\%
1984.5	641.6	388.1	296.7	236.0	72.7	60.7	0.576	31\%
1985.5	1310.2	527.5	165.9	49.1	78.3	0.0	0.688	26\%
1986.5	273.4	1075.1	338.7	71.9	0.0	0.0	0.796	37\%
1987.5	98.7	388.8	384.6	51.4	77.1	0.0	0.494	28\%
1988.5	18.2	206.7	104.0	26.6	0.0	0.0	0.165	32\%
1989.5	241.0	1934.1	750.4	76.6	54.0	0.0	0.948	58\%
1990.5	0.0	359.2	1429.9	285.8	0.0	0.0	0.703	33\%
1991.5	2038.8	267.0	426.2	347.2	0.0	0.0	0.708	29\%
1992.5	146.8	383.9	691.0	157.1	139.4	26.6	0.559	30\%
1993.5	814.6	135.2	568.8	520.4	0.0	21.4	0.529	42\%
1994.5	1159.8	214.6	954.1	692.2	254.9	54.8	0.871	32\%
1995.5	267.7	115.4	335.2	267.2	44.6	12.1	0.344	35\%
1996.5	144.3	341.3	1813.8	433.5	72.7	0.0	1.265	58\%
1997.5	1351.8	517.7	3341.0	2028.5	1039.8	79.8	3.670	35\%
1998.5	1844.4	4675.3	4078.9	1154.6	289.5	71.7	4.220	34\%
1999.5	2998.7	8175.9	5558.9	1390.3	1394.2	252.8	7.738	21\%
2000.5	610.8	1647.5	4672.5	2350.3	919.7	802.6	5.666	49\%
2001.5	3414.2	6083.6	7853.7	2524.8	1667.8	1988.2	11.213	40\%
2002.5	2031.4	5581.8	2064.5	576.1	295.6	26.6	3.644	51\%
2003.5	1045.3	4882.8	2725.9	548.0	97.0	185.7	3.919	33\%
2004.5	850.3	5346.1	4862.4	2044.4	897.1	170.7	4.966	46\%
2005.5	304.0	2033.6	3652.1	595.9	179.3	0.0	2.391	52\%
2006.5	6012.1	6067.2	3556.7	1132.9	247.7	44.4	4.388	27\%
2007.5	1026.5	11110.9	7634.7	1939.6	371.3	90.9	7.912	31\%
2008.5	162.8	6963.2	9592.7	1002.8	0.0	0.0	6.900	28\%
2009.5	445.8	4169.4	11531.5	2072.0	588.3	57.9	6.797	27\%

Year	Age1	Age2	Age3	Age4	Age5	Age6+	B (000 mt)	CV(B)
2010.5	115.4	2661.6	4205.3	719.7	272.7	0.0	2.242	30%
2011.5	234.4	2795.0	3756.5	1079.7	141.8	9.6	2.380	26%
2012.5	189.3	1432.0	3550.5	1539.0	428.0	13.8	2.446	47%

Table 12. NEFSC scallop survey index of abundance (stratified mean \#/tow) for Georges Bank yellowtail flounder and index of total biomass (stratified mean kg/tow). Note the values for 1989 and 1999 are considered too uncertain for use as a tuning index and the 1986, 2000, 2008, 2011, and 2012 surveys did not fully cover the Canadian portion of Georges Bank (D. Hart, pers. comm.). (Note: These surveys are assumed to occur at the midpoint of the year.)

Year	Age1	Age2	Age3	Age4	Age5	Age6+	B (kg/tow)
1982.5	0.3505	0.5851	0.2863	0.1768	0.0541	0.0000	0.527
1983.5	0.1389	0.5693	0.5811	0.0828	0.0176	0.0339	0.699
1984.5	0.2021	0.2606	0.0935	0.0813	0.0765	0.0089	0.244
1985.5	0.2717	0.4373	0.0131	0.0158	0.0295	0.0000	0.143
1986.5							
1987.5	0.1031	0.0776	0.1154	0.0541	0.0069	0.0029	0.187
1988.5	0.1175	0.0172	0.0324	0.0475	0.0401	0.0000	0.108
1989.5							
1990.5	0.1020	0.0257	0.3312	0.0861	0.0356	0.0126	0.245
1991.5	1.9094	0.0000	0.1248	0.1383	0.0296	0.0000	0.377
1992.5	0.3032	0.1281	0.3407	0.2285	0.0482	0.0030	0.409
1993.5	1.1636	0.1966	0.2860	0.1457	0.0081	0.0000	0.427
1994.5	1.4197	0.3308	0.4193	0.2807	0.0614	0.0246	0.603
1995.5	0.5183	0.4546	0.7705	0.5047	0.1627	0.0091	0.846
1996.5	0.3673	0.3037	0.8574	0.7357	0.3089	0.0188	1.271
1997.5	0.9682	0.3956	1.2006	0.9694	0.2008	0.0362	1.659
1998.5	1.7583	0.8858	0.7353	0.9479	0.5744	0.1074	2.041
1999.5							
2000.5							
2001.5	0.8943	0.4727	1.0595	0.5453	0.1249	0.1669	1.525
2002.5	0.9561	0.2885	0.8333	0.3803	0.2290	0.1358	1.336
2003.5	0.7469	0.6047	0.9887	0.6538	0.1330	0.1980	1.783
2004.5	0.3459	0.4124	0.7100	0.1994	0.0415	0.0175	0.777
2005.5	0.4657	0.3523	0.5743	0.2279	0.0842	0.0090	0.623
2006.5	1.9150	0.9652	0.6833	0.3202	0.0429	0.0247	0.880
2007.5	0.5074	1.6374	1.1764	0.3705	0.0592	0.0040	1.265
2008.5							
2009.5	0.2021	0.0775	0.7519	0.6516	0.1352	0.0162	0.719
2010.5	0.0862	0.2131	0.5783	0.9095	0.2878	0.0581	0.749
2011.5							
2012.5							

Table 13a. Statistical properties of estimates for population abundance and survey catchability constants (scallop x103) for Georges Bank yellowtail flounder for the Split Series VPA.

		Bootstrap					
		Standard Age	Relative Error	Error	Bias		Relative
---:							
Bias							

Survey Catchability Constants

DFO Survey: 1987-1994

2	0.145	0.048	33%	0.005	4%
3	0.232	0.033	14%	0.005	2%
4	0.389	0.074	19%	0.005	1%
5	0.436	0.096	22%	0.005	1%
$6+$	0.254	0.061	24%	0.008	3%

DFO Survey: 1995-2013

2	0.358	0.099	28%	0.016	5%
3	1.844	0.397	22%	0.036	2%
4	2.555	0.530	21%	0.042	2%
5	1.963	0.421	21%	0.013	1%
$6+$	1.352	0.305	23%	0.024	2%

NMFS Spring Survey: Yankee 41, 1973-1981

1	0.007	0.006	76%	0.001	18%
2	0.076	0.014	19%	0.001	2%
3	0.096	0.016	17%	0.000	0%
4	0.093	0.011	12%	0.001	1%
5	0.076	0.015	20%	0.001	1%
$6+$	0.072	0.023	32%	0.004	5%

NMFS Spring Survey: Yankee 36, 1982-1994

1	0.004	0.001	24%	0.000	2%
2	0.046	0.015	33%	0.003	6%
3	0.095	0.015	15%	0.001	1%
4	0.152	0.020	13%	0.001	1%
5	0.229	0.044	19%	0.004	2%
$6+$	0.423	0.094	22%	0.010	2%

Table 13a. (Continued)

		Bootstrap			
		Standard	Relative	Relative	
Age	Estimate	Error	Error	Bias	Bias

NMFS Spring Survey: Yankee 36, 1995-2013

1	0.009	0.003	34%	0.000	4%
2	0.182	0.024	13%	0.002	1%
3	0.754	0.124	16%	0.017	2%
4	0.925	0.168	18%	0.009	1%
5	0.731	0.147	20%	0.017	2%
$6+$	0.596	0.106	18%	0.008	1%

NMFS Fall Survey: 1973-1994

1	0.040	0.010	26%	0.002	5%
2	0.088	0.013	15%	0.001	1%
3	0.150	0.015	10%	0.000	0%
4	0.156	0.020	13%	0.002	1%
5	0.205	0.040	20%	0.003	2%
$6+$	0.306	0.064	21%	0.006	2%

NMFS Fall Survey: 1995-2012

1	0.081	0.018	23%	0.002	3%
2	0.391	0.131	33%	0.018	5%
3	0.903	0.208	23%	0.028	3%
4	0.615	0.112	18%	0.007	1%
5	0.563	0.131	23%	0.009	2%
$6+$	0.353	0.121	34%	0.016	5%

NMFS Scallop Survey: 1982-1994
$\begin{array}{llllll}1 & 0.026 & 0.008 & 32 \% & 0.001 & 5 \%\end{array}$
NMFS Scallop Survey: 1995-2012

1	0.060	0.008	14%	0.001	1%

Table 13b. Statistical properties of estimates for population abundance and survey catchability constants (scallop x103) for Georges Bank yellowtail flounder for the Single Series VPA.

		Bootstrap								
Age	Estimate	Standard Error	Relative Error	Bias	Relative Bias					
	Population Abundance									
2	2993	1843	62%	463	15%					
3	2757	1318	48%	223	8%					
4	2552	999	39%	200	8%					
5	5677	1175	21%	143	3%					

Survey Catchability Constants

DFO Survey: 1987-2013

2	0.237	0.056	24%	0.007	3%
3	0.873	0.209	24%	0.024	3%
4	1.276	0.278	22%	0.021	2%
5	1.073	0.244	23%	0.023	2%
$6+$	0.703	0.181	26%	0.021	3%

NMFS Spring Survey: Yankee 36, 1982-2013

1	0.006	0.001	22%	0.000	3%
2	0.094	0.017	18%	0.001	1%
3	0.291	0.058	20%	0.004	1%
4	0.396	0.074	19%	0.007	2%
5	0.399	0.065	16%	0.008	2%
$6+$	0.455	0.066	15%	0.005	1%

NMFS Fall Survey: 1973-2012

1	0.050	0.009	17%	0.000	1%
2	0.157	0.031	19%	0.004	2%
3	0.310	0.051	17%	0.005	2%
4	0.265	0.038	14%	0.002	1%
5	0.308	0.055	18%	0.005	2%
$6+$	0.299	0.068	23%	0.008	3%

NMFS Scallop Survey: 1982-2012

1	0.038	0.007	18%	0.001	1%

Table 14a. Retrospective rho statistics for fishing mortality rate (ages 4+), spawning stock biomass, and age 1 recruitment based on seven peels of the Split Series VPA.

Peel	F	SSB	R
1	-0.486	0.524	0.311
2	-0.774	1.585	-0.365
3	-0.806	3.232	0.054
4	-0.757	4.037	-0.151
5	-0.725	2.559	2.020
6	-0.471	1.165	4.803
7	-0.131	0.795	-0.018
mean	-0.593	1.985	0.951

Table 14b. Retrospective rho statistics for fishing mortality rate (ages 4+), spawning stock biomass, and age 1 recruitment based on seven peels of the Single Series VPA.

Peel	F	SSB	R
1	-0.664	0.754	0.098
2	-0.857	2.203	-0.472
3	-0.888	5.025	-0.403
4	-0.883	6.996	-0.293
5	-0.878	5.010	2.294
6	-0.785	3.153	6.449
7	-0.686	2.725	0.474
mean	-0.806	3.695	1.164

Table 15a. Beginning of year population abundance in numbers (000s) for Georges Bank yellowtail flounder from the Split Series VPA. The age 1 value in the last year is the geometric mean of the previous ten years.

	Age Group						
Year	1	2	3	4	5	$6+$	Total
1973	29384	24172	29516	17300	6966	3013	110351
1974	52184	23733	15136	12051	5732	2391	111229
1975	70632	40588	10930	5010	3079	1709	131948
1976	24731	53646	9852	2425	977	1562	93193
1977	17283	19674	15554	3171	719	850	57252
1978	54437	13809	7987	3390	956	373	80953
1979	25508	35604	8124	2468	1073	559	73336
1980	24034	20595	19711	3268	747	239	68594
1981	62997	19390	13268	7499	1302	221	104677
1982	22846	51480	14885	5535	1783	156	96685
1983	6581	16754	25937	5517	1514	345	56648
1984	10843	4755	6579	6472	2305	487	31441
1985	16749	8414	2089	1379	870	136	29636
1986	8473	12837	2991	767	402	224	25695
1987	9193	6776	4801	1440	282	201	22692
1988	22841	7386	2617	1153	309	73	34379
1989	9661	18250	3361	771	198	55	32296
1990	11217	7738	12981	1747	250	47	33980
1991	22557	8975	4437	4399	560	104	41032
1992	17518	17869	7215	2296	940	65	45903
1993	13938	12168	6459	3250	574	126	36515
1994	13178	6725	8713	2323	609	184	31732
1995	11670	10725	4304	1576	305	66	28646
1996	13467	9512	8499	2237	509	70	34293
1997	19791	10935	7174	5103	1039	246	44288
1998	22377	16129	7932	4227	2515	328	53508
1999	24508	18169	11411	3465	1777	675	60005
2000	19746	20011	12396	5585	1454	930	60124
2001	22169	16048	12908	5046	1751	916	58838
2002	15117	17992	10544	4374	1559	1108	50694
2003	10584	12185	10983	5542	1869	1657	42820
2004	6833	8521	6462	4781	2463	1838	30897
2005	8505	5539	5938	2451	563	266	23262
2006	10068	6910	3117	1297	499	293	22184
2007	6213	8106	4494	1104	227	92	20236
2008	5424	5041	5295	2153	315	62	18289
2009	5727	4415	3682	2630	997	142	17593
2010	2883	4673	3359	1880	940	210	13944
2011	2260	2358	3701	2171	745	182	11417

	Age Group						
Year	1	2	3	4	5	$6+$	Total
2012	2278	1841	1782	2335	971	186	9393
2013	5308	1855	1410	1128	1394	690	11785

Table 15b. Beginning of year population abundance in numbers (000s) for Georges Bank yellowtail flounder from the Single Series VPA. The age 1 value in the last year is the geometric mean of the previous ten years.

Year	Age Group						Total
	1	2	3	4	5	6+	
1973	29384	24172	29516	17300	6966	3013	110351
1974	52184	23733	15136	12051	5732	2391	111229
1975	70632	40588	10930	5010	3079	1709	131948
1976	24731	53646	9852	2425	977	1562	93193
1977	17283	19674	15554	3171	719	850	57252
1978	54437	13809	7987	3390	956	373	80953
1979	25508	35604	8124	2468	1073	559	73336
1980	24034	20595	19711	3268	747	239	68594
1981	62997	19390	13268	7499	1302	221	104677
1982	22846	51480	14885	5535	1783	156	96685
1983	6581	16754	25937	5517	1514	345	56648
1984	10843	4755	6579	6472	2305	487	31441
1985	16749	8414	2089	1379	870	136	29636
1986	8473	12837	2991	767	402	224	25695
1987	9193	6776	4801	1440	282	201	22692
1988	22841	7386	2617	1153	309	73	34379
1989	9661	18250	3361	771	198	55	32296
1990	11217	7738	12981	1747	250	47	33980
1991	22557	8975	4437	4399	560	104	41032
1992	17518	17869	7215	2296	940	65	45903
1993	13938	12168	6459	3250	574	126	36515
1994	13178	6725	8713	2323	609	184	31732
1995	11670	10725	4304	1576	305	66	28646
1996	13467	9512	8499	2237	509	70	34293
1997	19791	10935	7174	5103	1039	246	44288
1998	22378	16129	7932	4227	2515	328	53509
1999	24509	18169	11411	3465	1777	675	60007
2000	19749	20012	12396	5585	1454	930	60128
2001	22173	16050	12908	5047	1751	916	58846
2002	15131	17995	10545	4375	1560	1108	50714
2003	10612	12197	10986	5543	1870	1657	42865
2004	6941	8544	6471	4784	2464	1838	31042
2005	9094	5628	5957	2458	565	266	23968
2006	11332	7392	3190	1312	504	297	24027
2007	8262	9141	4888	1162	239	97	23790
2008	10281	6718	6141	2474	363	71	26048
2009	15268	8391	5056	3320	1259	179	33474
2010	5478	12485	6614	3001	1501	335	29415
2011	4270	4483	10096	4835	1659	405	25749

	Age Group						
Year	1	2	3	4	5	$6+$	Total
2012	3669	3486	3522	7569	3147	603	21996
2013	7811	2993	2757	2552	5677	2813	24603

Table 16a. Fishing mortality rate for Georges Bank yellowtail from the Split Series VPA.

	Age Group						
Year	1	2	3	4	5	$6+$	$4-5$
1973	0.01	0.27	0.70	0.90	0.90	0.90	0.90
1974	0.05	0.58	0.91	1.16	1.16	1.16	1.16
1975	0.08	1.22	1.31	1.43	1.43	1.43	1.43
1976	0.03	1.04	0.93	1.02	1.02	1.02	1.02
1977	0.02	0.70	1.32	1.00	1.00	1.00	1.00
1978	0.22	0.33	0.97	0.95	0.95	0.95	0.95
1979	0.01	0.39	0.71	0.99	0.99	0.99	0.99
1980	0.01	0.24	0.77	0.72	0.72	0.72	0.72
1981	0.00	0.06	0.67	1.24	1.24	1.24	1.24
1982	0.11	0.49	0.79	1.10	1.10	1.10	1.10
1983	0.13	0.73	1.19	0.67	0.67	0.67	0.67
1984	0.05	0.62	1.36	1.81	1.81	1.81	1.81
1985	0.07	0.83	0.80	1.03	1.03	1.03	1.03
1986	0.02	0.78	0.53	0.80	0.80	0.80	0.80
1987	0.02	0.75	1.23	1.34	1.34	1.34	1.34
1988	0.02	0.59	1.02	1.56	1.56	1.56	1.56
1989	0.02	0.14	0.45	0.93	0.93	0.93	0.93
1990	0.02	0.36	0.88	0.94	0.94	0.94	0.94
1991	0.03	0.02	0.46	1.34	1.34	1.34	1.34
1992	0.16	0.82	0.60	1.19	1.19	1.19	1.19
1993	0.53	0.13	0.82	1.47	1.47	1.47	1.47
1994	0.01	0.25	1.51	1.83	1.83	1.83	1.83
1995	0.00	0.03	0.45	0.93	0.93	0.93	0.93
1996	0.01	0.08	0.31	0.57	0.57	0.57	0.57
1997	0.00	0.12	0.33	0.51	0.51	0.51	0.51
1998	0.01	0.15	0.63	0.67	0.67	0.67	0.67
1999	0.00	0.18	0.51	0.67	0.67	0.67	0.67
2000	0.01	0.24	0.70	0.96	0.96	0.96	0.96
2001	0.01	0.22	0.88	0.97	0.97	0.97	0.97
2002	0.02	0.29	0.44	0.65	0.65	0.65	0.65
2003	0.02	0.43	0.63	0.61	0.61	0.61	0.61
2004	0.01	0.16	0.77	1.94	1.94	1.94	1.94
2005	0.01	0.37	1.32	1.39	1.39	1.39	1.39
2006	0.02	0.23	0.84	1.54	1.54	1.54	1.54
2007	0.01	0.23	0.54	1.05	1.05	1.05	1.05
2008	0.01	0.11	0.50	0.57	0.57	0.57	0.57
2009	0.00	0.07	0.47	0.83	0.83	0.83	0.83
2010	0.00	0.03	0.24	0.73	0.73	0.73	0.73
2011	0.01	0.08	0.26	0.60	0.60	0.60	0.60
2012	0.01	0.07	0.26	0.32	0.32	0.32	0.32

Table 16b. Fishing mortality rate for Georges Bank yellowtail from the Single Series VPA.

	Age Group						
Year	1	2	3	4	5	$6+$	$4-5$
1973	0.01	0.27	0.70	0.90	0.90	0.90	0.90
1974	0.05	0.58	0.91	1.16	1.16	1.16	1.16
1975	0.08	1.22	1.31	1.43	1.43	1.43	1.43
1976	0.03	1.04	0.93	1.02	1.02	1.02	1.02
1977	0.02	0.70	1.32	1.00	1.00	1.00	1.00
1978	0.22	0.33	0.97	0.95	0.95	0.95	0.95
1979	0.01	0.39	0.71	0.99	0.99	0.99	0.99
1980	0.01	0.24	0.77	0.72	0.72	0.72	0.72
1981	0.00	0.06	0.67	1.24	1.24	1.24	1.24
1982	0.11	0.49	0.79	1.10	1.10	1.10	1.10
1983	0.13	0.73	1.19	0.67	0.67	0.67	0.67
1984	0.05	0.62	1.36	1.81	1.81	1.81	1.81
1985	0.07	0.83	0.80	1.03	1.03	1.03	1.03
1986	0.02	0.78	0.53	0.80	0.80	0.80	0.80
1987	0.02	0.75	1.23	1.34	1.34	1.34	1.34
1988	0.02	0.59	1.02	1.56	1.56	1.56	1.56
1989	0.02	0.14	0.45	0.93	0.93	0.93	0.93
1990	0.02	0.36	0.88	0.94	0.94	0.94	0.94
1991	0.03	0.02	0.46	1.34	1.34	1.34	1.34
1992	0.16	0.82	0.60	1.19	1.19	1.19	1.19
1993	0.53	0.13	0.82	1.47	1.47	1.47	1.47
1994	0.01	0.25	1.51	1.83	1.83	1.83	1.83
1995	0.00	0.03	0.45	0.93	0.93	0.93	0.93
1996	0.01	0.08	0.31	0.57	0.57	0.57	0.57
1997	0.00	0.12	0.33	0.51	0.51	0.51	0.51
1998	0.01	0.15	0.63	0.67	0.67	0.67	0.67
1999	0.00	0.18	0.51	0.67	0.67	0.67	0.67
2000	0.01	0.24	0.70	0.96	0.96	0.96	0.96
2001	0.01	0.22	0.88	0.97	0.97	0.97	0.97
2002	0.02	0.29	0.44	0.65	0.65	0.65	0.65
2003	0.02	0.43	0.63	0.61	0.61	0.61	0.61
2004	0.01	0.16	0.77	1.94	1.94	1.94	1.94
2005	0.01	0.37	1.31	1.38	1.38	1.38	1.38
2006	0.01	0.21	0.81	1.50	1.50	1.50	1.50
2007	0.01	0.20	0.48	0.96	0.96	0.96	0.96
2008	0.00	0.08	0.41	0.48	0.48	0.48	0.48
2009	0.00	0.04	0.32	0.59	0.59	0.59	0.59
2010	0.00	0.01	0.11	0.39	0.39	0.39	0.39
2011	0.00	0.04	0.09	0.23	0.23	0.23	0.23
2012	0.00	0.03	0.12	0.09	0.09	0.09	0.09

Table 17. Beginning of year weight (kg) at age for Georges Bank yellowtail. The 2013 values are set equal to the average of the 2010-2012 values.

	Age Group					
Year	1	2	3	4	5	$6+$
1973	0.055	0.292	0.403	0.465	0.564	0.778
1974	0.069	0.186	0.416	0.530	0.598	0.832
1975	0.068	0.191	0.410	0.524	0.613	0.695
1976	0.061	0.188	0.415	0.557	0.642	0.861
1977	0.071	0.192	0.404	0.587	0.704	0.931
1978	0.057	0.191	0.418	0.601	0.713	0.970
1979	0.068	0.183	0.381	0.578	0.713	0.950
1980	0.056	0.192	0.403	0.551	0.732	1.072
1981	0.078	0.184	0.397	0.546	0.681	0.840
1982	0.072	0.192	0.403	0.564	0.675	1.082
1983	0.107	0.185	0.364	0.543	0.694	1.010
1984	0.109	0.183	0.335	0.470	0.627	0.797
1985	0.132	0.242	0.347	0.493	0.604	0.800
1986	0.135	0.248	0.442	0.583	0.741	1.015
1987	0.074	0.242	0.423	0.606	0.727	0.875
1988	0.058	0.199	0.425	0.604	0.758	0.975
1989	0.059	0.184	0.413	0.633	0.776	1.053
1990	0.070	0.170	0.359	0.552	0.706	0.845
1991	0.078	0.158	0.327	0.438	0.650	0.877
1992	0.060	0.188	0.294	0.441	0.563	1.110
1993	0.062	0.170	0.333	0.428	0.545	0.863
1994	0.162	0.161	0.317	0.423	0.558	0.775
1995	0.138	0.230	0.300	0.405	0.535	0.768
1996	0.075	0.219	0.335	0.438	0.573	1.012
1997	0.179	0.190	0.336	0.468	0.630	0.947
1998	0.124	0.256	0.360	0.472	0.591	0.966
1999	0.147	0.256	0.389	0.523	0.642	0.901
2000	0.182	0.278	0.420	0.552	0.700	0.954
2001	0.204	0.288	0.420	0.542	0.707	1.027
2002	0.250	0.309	0.417	0.553	0.714	1.068
2003	0.202	0.318	0.425	0.560	0.740	1.048
2004	0.166	0.258	0.397	0.527	0.689	0.956
2005	0.074	0.268	0.361	0.511	0.668	0.991
2006	0.059	0.192	0.376	0.499	0.674	0.996
2007	0.110	0.170	0.356	0.474	0.661	1.023
2008	0.018	0.216	0.347	0.467	0.605	0.962
2009	0.107	0.124	0.362	0.473	0.610	0.929
2010	0.125	0.224	0.376	0.475	0.596	0.808
2011	0.079	0.242	0.386	0.489	0.579	0.747
2012	0.164	0.208	0.390	0.506	0.609	0.806
2013	0.123	0.225	0.384	0.490	0.595	0.787

Table 18a. Beginning of year biomass (mt) and spawning stock biomass (mt) for Georges Bank yellowtail from the Split Series VPA.

Beginning Biomass Year			
$1+$	$3+$	SSB	
1973	34860	26206	22161
1974	26134	18088	14780
1975	22723	10184	9014
1976	18984	7408	10024
1977	14447	9447	8351
1978	12146	6418	6169
1979	14070	5818	8501
1980	15820	10540	10884
1981	18890	10430	10144
1982	21994	10493	12975
1983	17637	13841	11103
1984	9121	7075	3847
1985	6283	2040	2558
1986	6628	2293	3210
1987	5599	3282	2750
1988	4905	2113	2198
1989	6004	2088	4170
1990	7947	5845	4750
1991	7004	3834	3485
1992	8153	3735	4472
1993	6893	3964	3966
1994	7443	4228	2823
1995	6229	2145	2941
1996	7275	4185	4992
1997	11304	5683	6379
1998	13541	6649	7259
1999	16242	7997	9592

Beginning			
Year	$1+$	$3+$	SSB
2000	19358	10197	10259
2001	19467	10331	9252
2002	18452	9111	10104
2003	16900	10890	10029
2004	11865	8532	5416
2005	6150	4038	3159
2006	4367	2448	2314
2007	4432	2369	2734
2008	4276	3092	3234
2009	4480	3316	3227
2010	4293	2886	3004
2011	3805	3056	2988
2012	3376	2618	2593
2013		2467	

Table 18b. Beginning of year biomass (mt) and spawning stock biomass (mt) for Georges Bank yellowtail from the Single Series VPA.

Beginning Biomass Year			
1973	34860	26206	SSB
1974	26134	18088	14780
1975	22723	10184	9014
1976	18984	7408	10024
1977	14447	9447	8351
1978	12146	6418	6169
1979	14070	5818	8501
1980	15820	10540	10884
1981	18890	10430	10144
1982	21994	10493	12975
1983	17637	13841	11103
1984	9121	7075	3847
1985	6283	2040	2558
1986	6628	2293	3210
1987	5599	3282	2750
1988	4905	2113	2198
1989	6004	2088	4170
1990	7947	5845	4750
1991	7004	3834	3485
1992	8153	3735	4472
1993	6893	3964	3966
1994	7443	4228	2823
1995	6229	2145	2941
1996	7275	4185	4992
1997	11304	5683	6379
1998	13541	6649	7259
1999	16242	7997	9592

Beginning			
Bear	$1+$	$3+$	SSB
2000	19359	10198	10259
2001	19469	10331	9253
2002	18457	9112	10106
2003	16913	10893	10034
2004	11895	8539	5427
2005	6230	4051	3188
2006	4576	2491	2426
2007	5015	2550	3058
2008	5205	3573	3971
2009	7016	4334	4894
2010	8559	5080	6333
2011	8944	7522	8008
2012	8935	7606	7872
2013		7899	

Table 19. Estimated and rho adjusted values for the Split Series VPA and Single Series VPA. Note the SSB rho value was used to adjust the adult biomass estimate.

Split Series Single Series

	estimate	rho adjusted	estimate	rho adjusted
2012 F	0.32	0.78	0.09	0.45
2012 R	2278	1168	3669	1696
2012 SSB	2593	869	7872	1677
2013 Adult B	2467	826	7899	1683

Table 20a. Recent three year averages of partial recruitment to the fishery, maturity, beginning of year weights at age and catch weights at age used in projections.

Table 20b. Deterministic projections from the Split Series VPA for Georges Bank yellowtail assuming the quota is caught next year and $F_{\text {ref }}$ is applied in the quota year.

Year	Age Group							
	1	2	3	4	5	$6+$	1+	$3+$
Fishing Mortality								
2013	0.002	0.032	0.129	0.246	0.246	0.246		
2014	0.002	0.032	0.131	0.25	0.25	0.25		
Jan-1 Population Numbers (000s)								
2013	5308	1855	1410	1128	1394	690		
2014	5308	4336	1471	1015	722	1334		
2015	5308	4336	3437	1057	647	1311		
Jan-1 Population Biomass (mt)								
2013	653	417	542	553	829	543	3537	2467
2014	653	976	565	498	430	1050	4171	2542
2015	653	976	1320	518	385	1032	4883	3255
Spawning Stock Biomass (mt)								
2013	0	259	533	508	763	451	2514	
2014	0	606	555	456	395	871	2882	
Catch Numbers (000s)								
2013	11	53	155	224	277	137		
2014	11	125	164	204	145	269		
Fishery Yield (mt including discards)								
2013	2	17	69	121	182	108	500	
2014	2	42	73	111	96	211	535	

Table 20c. Deterministic projections from the Split Series VPA with SSB rho adjustment applied to all ages in the first year for Georges Bank yellowtail assuming the quota is caught next year and $F_{\text {ref }}$ is applied in the quota year.

	Age Group							
Year	1	2	3	4	5	$6+$	1+	$3+$

Fishing Mortality

2013	0.009	0.126	0.510	0.975	0.975	0.975
2014	0.002	0.032	0.131	0.25	0.25	0.25

Jan-1 Population Numbers (000s)

2013	1778	621	472	378	467	231
2014	1778	1443	449	232	117	216
2015	1778	1452	1144	322	148	212

Jan-1 Population Biomass (mt)									
2013	219	140	181	185	278	182	1185	826	
2014	219	325	172	114	69	170	1069	525	
2015	219	327	439	158	88	167	1398	852	

Spawning Stock Biomass (mt)

2013	0	83	152	126	189	112	661
2014	0	202	169	104	64	141	680

Catch Numbers (000s)

2013	14	67	172	217	268	133
2014	4	42	50	47	24	43

Fishery Yield (mt including discards)

2013	2	22	77	117	176	104	500
2014	1	14	22	25	15	34	112

Table 20d. Deterministic projections from the Single Series VPA for Georges Bank yellowtail assuming the quota is caught next year and $F_{\text {ref }}$ is applied in the quota year.

Year	Age Group							
	1	2	3	4	5	$6+$	1+	3+
Fishing Mortality								
2013	0.001	0.012	0.042	0.069	0.069	0.069		
2014	0.004	0.046	0.154	0.25	0.25	0.25		
Jan-1 Population Numbers (000s)								
2013	7811	2993	2757	2552	5677	2813		
2014	7811	6388	2420	2164	1951	6490		
2015	7811	6369	4997	1699	1380	5382		
Jan-1 Population Biomass (mt)								
2013	961	673	1059	1250	3378	2213	9535	7901
2014	961	1437	929	1061	1161	5108	10656	8258
2015	961	1433	1919	833	821	4236	10202	7808
Spawning Stock Biomass (mt)								
2013	0	421	1080	1237	3345	1979	8062	
2014	0	887	905	972	1066	4234	8065	
Catch Numbers (000s)								
2013	8	34	103	153	341	169		
2014	28	258	313	436	393	1307		
Fishery Yield (mt including discards)								
2013	1	11	46	83	225	133	500	
2014	5	86	140	236	259	1028	1754	

Table 20e. Deterministic projections from the Single Series VPA with SSB rho adjustment applied to all ages in the first year for Georges Bank yellowtail assuming the quota is caught next year and $F_{\text {ref }}$ is applied in the quota year.

	Age Group							
Year	1	2	3	4	5	$6+$	1+	$3+$

Fishing Mortality

2013	0.006	0.067	0.226	0.367	0.367	0.367
2014	0.004	0.046	0.154	0.25	0.25	0.25

Jan-1 Population Numbers (000s)

2013	1664	638	587	544	1209	599
2014	1664	1354	488	384	308	1026
2015	1664	1357	1059	343	245	851

Jan-1 Population Biomass (mt)

2013	205	143	226	266	719	471	2031	1683
2014	205	305	187	188	183	807	1876	1366
2015	205	305	407	168	146	669	1900	1390

Spawning Stock Biomass (mt)

2013	0	88	213	233	629	372	1535
2014	0	188	183	172	168	669	1381

Catch Numbers (000s)											
2013	9	37	108	152	339	168					
2014	6	55	63	77	62	207					

Fishery Yield (mt including discards)

2013	1	12	48	83	223	132	500
2014	1	18	28	42	41	163	293

Table 21. Projection results under two fishing mortality rates: $F_{\text {ref }}=0.25$ and $75 \% F_{\text {ref }}=0.1875$. The rows definitions are Catch=median Catch ($m t$) in 2014, Adult Jan-1 B=median beginning year age 3+ biomass in 2014, delta $B=$ change in median adult Jan-1 biomass from 2014 to 2015, $P(B$ inc $)=$ probability that adult Jan-1 biomass will increase from 2014 to 2015, P(B inc 10\%) = probability that adult Jan-1 biomass will increase by at least 10% from 2014 to 2015. The column definitions are Split=Split Series VPA, adjSp=Split Series VPA adjusted for SSB retrospective, Single=Single Series VPA, adjSi=Single Series VPA adjusted for SSB retrospective. The Split and Single results are shown in a different font to indicate that they do not sufficiently address the retrospective problem.

	Split	adjSp	Single	adjSi
Fref = 0.25				
Catch	562	123	1833	314
Adult Jan-1 B	2671	569	8620	1443
delta B	26%	56%	-6%	1%
P(B inc)	1	1	0.031	0.563
P(B inc 10\%)	0.997	1	0	0.044
F75\%Fref = 0.1875				
Catch	432	95	1412	242
Adult Jan-1 B	2671	569	8620	1443
delta B	31%	61%	-1%	5%
P(B inc)	1	1	0.36	0.888
P(B inc 10\%)	1	1	0	0.21

Table 22. Implications of five 2014 quotas (100-500 mt) in four projection scenarios described in Table 20: P(F>Fref) = probability fishing mortality rate in 2014 will exceed $F_{\text {ref }}, F 2014=$ median 2014 F, delta $B=$ relative change in median biomass from 2014 to 2015, $P(B$ inc $)=$ probability median adult Jan-1 biomass will increase or $P(B$ inc 10\%) $=$ increase by at least 10\%. The Split Series and Single Series unadjusted results are shown in a different font to indicate that they do not sufficiently address the retrospective problem.

	2014 Quota (mt)				
	100	200	300	400	500
Split Series					
P(F)Fref)	0.00	0.00	0.00	0.05	0.29
F2014	0.04	0.08	0.13	0.17	0.22
delta B	42%	39%	35%	32%	28%
P(B inc)	1.00	1.00	1.00	1.00	1.00
P(B inc 10\%)	1.00	1.00	1.00	1.00	1.00

Split Series rho adjusted

P(F>Fref)	0.26	0.97	1.00	1.00	1.00
F2014	0.20	0.43	0.71	1.05	1.48
delta B	60%	44%	27%	11%	-4%
P(B inc)	1.00	1.00	1.00	1.00	0.21
P(B inc 10\%)	1.00	1.00	1.00	0.66	0.02

Single Series

P(F>Fref)	0.00	0.00	0.00	0.00	0.00
F2014	0.01	0.02	0.04	0.05	0.06
delta B	13%	12%	11%	10%	9%
P(B inc)	1.00	1.00	1.00	1.00	1.00
P(B inc 10\%)	0.84	0.75	0.63	0.49	0.33

Single Series rho adjusted

P(F>Fref)	0.00	0.02	0.42	0.89	0.99
F2014	0.07	0.15	0.24	0.33	0.43
delta B	14%	8%	1%	-5%	-11%
P(B inc)	1.00	1.00	0.72	0.04	0.00
P(B inc 10\%)	0.89	0.28	0.00	0.00	0.00

Figure 1a. Location of statistical unit areas for Canadian fisheries in NAFO Subdivision 5Ze.

Figure 1b. Statistical areas used for monitoring northeast US fisheries. Catches from areas 522, 525, 551, 552, 561 and 562 are included in the Georges Bank yellowtail flounder assessment. Shaded areas have been closed to fishing year-round since 1994, with exceptions.

Figure 2. Catch (landings plus discards) of Georges Bank yellowtail flounder by nation and year.

US Landings 2012

Figure 3. US landings of Georges Bank yellowtail by market category.

US Discards 2012

Figure 4. US yellowtail flounder discard length frequencies by gear. The vertical line at 33 cm denotes the US minimum legal size for landing yellowtail flounder. The distinction between large and small mesh in the cod end of the trawl occurs at 5.5 inches (14 cm).

US-Canadian Yellowtail Flounder Landings, 2012

Figure 5. Comparison of US and Canadian landings at length for Georges Bank yellowtail flounder.

US-Canadian Yellowtail Flounder Discards, 2012

Figure 6. Comparison of US and Canadian discards at length for Georges Bank yellowtail flounder.

US-Canadian Yellowtail Flounder Catch, 2012

Figure 7. Comparison of US and Canadian catch (landings plus discards) at length for Georges Bank yellowtail flounder.

2012

Figure 8. Catch at age of Georges Bank yellowtail flounder from the four components of Canadian and US landings and discards.

Catch at Age

Figure 9. Catch at age for Georges Bank yellowtail flounder, Canadian and US fisheries combined. (The area of the bubble is proportional to the magnitude of the catch). Diagonal red lines denote the 1975, 1985, 1995, and 2005 year-classes.

Figure 10. Trends in mean weight at age from the Georges Bank yellowtail fishery (Canada and US combined, including discards). Dashed lines denote average of time series.

Figure 11. DFO (top) and NMFS (bottom) strata used to derive research survey abundance indices for Georges Bank groundfish surveys. Note NMFS stratum 22 is not used in assessment.

Figure 11. (continued) NMFS scallop survey strata used to derive research survey abundance indices for Georges Bank groundfish surveys. Strata 54, 55, 58-72, and 74 are used to estimate the abundance of yellowtail flounder for this assessment.

Figure 12a. Four survey biomass indices (DFO, NEFSC spring, NEFSC fall and NEFSC scallop) for yellowtail flounder on Georges Bank rescaled to their respective means for years 1987-2007.

Figure 12b. Survey biomass for yellowtail flounder on Georges Bank in units of thousand metric tons (DFO, NEFSC spring, NEFSC fall, all three are minimum swept area biomass values) or kg/tow (NEFSC scallop, stratified mean catch per tow).

Figure 12c. Survey biomass coefficients of variation for yellowtail flounder on Georges Bank for the three bottom trawl surveys.

DFO

NEFSC Spring

NEFSC Fall

Figure 12d. Survey biomass for yellowtail flounder on Georges Bank in units of kg/tow with 95\% confidence intervals from +/- 1.96*stdev (DFO) or bootstrapping (NEFSC spring and NEFSC fall) for years in the assessment.

Figure 13a. Catch of yellowtail in weight (kg) per tow for DFO survey. Left panel shows previous 10 year averages, right panel most recent data. Catch for 2012 and 2013 shown for comparison between years.

Figure 13b. Catch of yellowtail in weight (kg) per tow for NEFSC spring (top) and NEFSC fall (bottom) surveys. Left panels show previous 10 year averages, right panels most recent data. Note the 2009 2013 survey values were adjusted from Henry B. Bigelow to Albatross IV equivalents by dividing Henry B. Bigelow catch in weight by 2.244 (spring) or 2.402 (fall).

Figure 14a. DFO spring survey estimates of total biomass (top panel) and total number (bottom panel) by stratum area for yellowtail flounder on Georges Bank.

NEFSC Spring

Figure 14b. NEFSC spring survey estimates of total biomass (top panel) and proportion (bottom panel) by stratum for yellowtail flounder on Georges Bank.

NEFSC Fall

Figure 14c. NEFSC fall survey estimates of total biomass (top panel) and proportion (bottom panel) by stratum for yellowtail flounder on Georges Bank.

Figure 15. Catch per tow in numbers of fish for the US spring and fall surveys by the Henry B. Bigelow. The lines denote the original observations and the dots the calibrated values converted to Albatross IV units. The calibration is calculated using the curve in the lower right panel (Calibrated = Original/Calibration Coefficient).

DFO

Figure 16a. Age specific indices of abundance for the DFO spring survey including the large tows in 2008 and 2009 (the area of the bubble is proportional to the magnitude). Diagonal red lines denote the 1965, 1975, 1985, 1995, and 2005 year-classes.

Spring

Figure 16b. Age specific indices of abundance for the NMFS spring survey (the area of the bubble is proportional to the magnitude). Diagonal red lines denote the 1965, 1975, 1985, 1995, and 2005 yearclasses.

Fall

Figure 16c. Age specific indices of abundance for the NMFS fall survey (the area of the bubble is proportional to the magnitude). Diagonal red lines denote the 1965, 1975, 1985, 1995, and 2005 yearclasses.

Scallop

Figure 16d. Age specific indices of abundance for the NMFS scallop survey, note years 1986, 1989, 1999, 2000, and 2008 are not included (the area of the bubble is proportional to the magnitude). Diagonal red lines denote the 1965, 1975, 1985, 1995, and 2005 year-classes.

Figure 16e. Age specific indices of abundance for the recent years of the four surveys, note year 2008 is not included in the scallop plot (the area of the bubble is proportional to the magnitude). The red diagonal line denotes the 2005 year-class.

Figure 16f. DFO survey catch at age by cohort on log scale. Red lines denote linear regression and blue lines denote 95% prediction interval for the linear regression. Correlation values are shown in lower right triangle.

Figure 16g. NEFSC spring survey catch at age by cohort on log scale. Red lines denote linear regression and blue lines denote 95% prediction interval for the linear regression. Correlation values are shown in lower right triangle.

FALL

age-8

age-3

age-2

age-1

Figure 16h. NEFSC fall survey catch at age by cohort on log scale. Red lines denote linear regression and blue lines denote 95% prediction interval for the linear regression. Correlation values are shown in lower right triangle.

Age 1

Age 3

Age 5

Age 2

Age 4

Age 6+

Figure 17a. Standardized catch/tow in numbers at age for the four surveys plotted on natural log scale. The standardization was merely the division of each index value by the mean of the associated time series. Circles denote the DFO survey, triangles the NEFSC spring survey, squares the NEFSC fall survey, and crosses the NEFSC scallop survey.

Figure 17b. Same as Figure 17a except the rescaled index values have been smoothed with a loess fit using 30% span to more clearly demonstrate similarities or differences among the surveys.

Figure 18a. Median and 2.5\%ile and 97.5\%ile of measured weight (kg) at length by year from the NEFSC spring survey. The horizontal dashed red line denotes the median of the medians.

Figure 18b. Median and 2.5\%ile and 97.5\%ile of measured weight (kg) at length by year from the NEFSC fall survey. The horizontal dashed red line denotes the median of the medians.

Figure 18c. Condition factor (Fulton's K) for male and female yellowtail flounder in the DFO survey.

Figure 19. Trends in relative fishing mortality (catch biomass/survey biomass), standardized to the mean for 1987-2010.

Figure 20. Trends in total mortality (Z) for ages 2, 3, and 4-6 from the four surveys.

DFO First Age = 3

Figure 21a. Catch curve for DFO survey using age 3 as first age in Z calculation. Top panel shows log of survey catch at age, with symbols denoting ages and colored lines connecting cohorts. Bottom panel shows estimated total mortality rate (Z) from catch curve with 80% confidence interval by year class of cohort (age 0).

SPRING First Age = $\mathbf{3}$

Figure 21b. Catch curve for NEFSC spring survey using age 3 as first age in Z calculation. Top panel shows log of survey catch at age, with symbols denoting ages and colored lines connecting cohorts. Bottom panel shows estimated total mortality rate (Z) from catch curve with 80% confidence interval by year class of cohort (age 0).

FALL First Age = 3

Figure 21c. Catch curve for NEFSC fall survey using age 3 as first age in Z calculation. Top panel shows \log of survey catch at age, with symbols denoting ages and colored lines connecting cohorts. Bottom panel shows estimated total mortality rate (Z) from catch curve with 80% confidence interval by year class of cohort (age 0).

Bridge Building

Figure 22. Fishing mortality rate (ages 4+, top panel), spawning stock biomass ($m t$, middle panel) and recruitment (millions of age 1 fish, bottom panel) for the TRAC 2012 assessment and updates to the catch data (see text: Building the Bridge). There are two lines in each panel, but they are indistinguishable.

NEFSC Spring

NEFSC Fall

Figure 23a. Catchability coefficients (q) from the Split Series VPA with bootstrapped 80\% confidence intervals.

NEFSC Fall

Figure 23b. Catchability coefficients (q) from the Single Series VPA with bootstrapped 80\% confidence intervals.

Split Series

Figure 24a. Age by age residuals from the Split Series VPA for log scale predicted minus observed population abundances, Georges Bank yellowtail flounder (bubble size is proportional to magnitude). The red symbols denote negative residuals, and white symbols denote positive residuals.

Single Series

Figure 24b. Age by age residuals from the Single Series VPA for log scale predicted minus observed population abundances, Georges Bank yellowtail flounder (bubble size is proportional to magnitude). The red symbols denote negative residuals, and white symbols denote positive residuals.

Figure 25a. Estimated catchability coefficients (q) from the Split Series VPA (lines) and relative q values for the NEFSC scallop survey at age 1 and the DFO survey at ages 2 through 6+. The relative q values are computed as the observed survey value (as a minimum swept area estimate) divided by the population abundance at that age at the start of that year (no adjustment for timing of the survey).

Figure 25b. Estimated catchability coefficients (q) from the Split Series VPA (lines) and relative q values for the NEFSC spring survey.

Figure 25c. Estimated catchability coefficients (q) from the Split Series VPA (lines) and relative q values for the NEFSC fall survey.

Figure 25d. Estimated catchability coefficients (q) from the Single Series VPA (lines) and relative q values for the NEFSC scallop survey at age 1 and the DFO survey at ages 2 through 6+.

Figure 25e. Estimated catchability coefficients (q) from the Single Series VPA (lines) and relative q values for the NEFSC spring survey.

Figure 25f. Estimated catchability coefficients (q) from the Single Series VPA (lines) and relative q values for the NEFSC fall survey.

Figure 26a. Retrospective analysis of Georges Bank yellowtail flounder from the Split Series VPA for age 4+ fishing mortality (top panel), spawning stock biomass (middle panel), and age 1 recruitment (lower panel). The black squares show the rho adjusted values for 2012.

Figure 26b. Relative retrospective plots for Georges Bank yellowtail flounder from Split Series VPA with Mohn's rho calculated from seven year peel for age 4+ fishing mortality (top panel), spawning stock biomass (middle panel), and age 1 recruitment (lower panel).

Single Series

Figure 26c. Retrospective analysis of Georges Bank yellowtail flounder from the Single Series VPA for age 4+ fishing mortality (top panel), spawning stock biomass (middle panel), and age 1 recruitment (lower panel). The black squares show the rho adjusted values for 2012.

Single Series

Figure 26d. Relative retrospective plots for Georges Bank yellowtail flounder from Single Series VPA with Mohn's rho calculated from seven year peel for age 4+ fishing mortality (top panel), spawning stock biomass (middle panel), and age 1 recruitment (lower panel).

Split Series

Figure 27a. Adult biomass (ages 3+, Jan-1) from the Split Series VPA. The open square shows the rho adjusted values for 2013 using the SSB rho to make the adjustment.

Single Series

Figure 27b. Adult biomass (ages 3+, Jan-1) from the Single Series VPA. The open square shows the rho adjusted values for 2013 using the SSB rho to make the adjustment.

Split Series

Figure 28a. Jan-1 age 1+ biomass estimated by the Split Series VPA and from the three groundfish surveys in minimum swept area values. The final VPA value uses the geometric mean of the previous ten years for the age 1 recruitment.

Single Series

Figure 28b. Jan-1 age 1+ biomass estimated by the Single Series VPA and from the three groundfish surveys in minimum swept area values. The final VPA value uses the geometric mean of the previous ten years for the age 1 recruitment.

Figure 29a. Fishing mortality rate (ages 4-5; top panel), spawning stock biomass (mt; middle panel), and age 1 recruitment (millions of fish; bottom panel) for the Split Series VPA and Single Series VPA.

Figure 29b. Dotcharts of 2012 fishing mortality rate (ages 4-5; top panel), spawning stock biomass (mt; middle panel), and age 1 recruitment (millions of fish; bottom panel) for the Split Series and Single Series VPAs. The filled circles denote the point estimates while the blue crosses denote the rho adjusted values for each run. The vertical lines denote the 80\% confidence interval for the Split Series VPA point estimate.

Figure 30. Point estimates of terminal year SSB (mt) and F (ages 4+) with 80\% confidence intervals (horizontal and vertical lines) and rho adjusted estimates of SSB and F (triangles) for the Split Series VPA and the Single Series VPA. The horizontal dashed line denotes Fref $=0.25$.

Split Series

Figure 31a. Stock recruitment relationship from the Split Series VPA. The number denotes year-class (year of SSB and year when recruitment was age 0). The triangle denotes the spawning stock biomass in 2012.

Split Series

Figure 31b. Estimated age 1 recruitment in millions of fish (denoted by bars) and spawning stock biomass in thousands of metric tons (denoted by solid line) by year-class (recruitment) or year (SSB) from the Split Series VPA.

Single Series

Figure 31c. Stock recruitment relationship from the Single Series VPA. The number denotes year-class (year of SSB and year when recruitment was age 0). The triangle denotes the spawning stock biomass in 2012.

Single Series

Figure 31d. Estimated age 1 recruitment in millions of fish (denoted by bars) and spawning stock biomass in thousands of metric tons (denoted by solid line) by year-class (recruitment) or year (SSB) from the Single Series VPA.

Figure 32. Probability the fishing mortality rate in 2014 is greater than $F_{r e f}=0.25$ for a range of catch values in 2014 and four projection scenarios. The four scenario labels are defined in Table 20.

Figure 33. Relative change in median adult Jan-1 biomass from 2014 to 2015 for a range of catch values in 2014 and four projection scenarios. The four scenario labels are defined in Table 20.

Figure 34. Probability adult Jan-1 biomass will not decline (top panel) or will increase by at least 10\% (bottom panel) from 2014 to 2015 for a range of catch values in 2014 and four projection scenarios. The four scenario labels are defined in Table 20.

Split Series Fref

Multiplier Applied to Age 1 N in 2013

Figure 35. Median catch ($m t$) in 2014 and relative change in median adult Jan-1 biomass from 2014 to 2015 for a range of multipliers applied to the age 1 abundance in 2013 used in the Split Series projections.

Split Series

Age

Figure 36a. Comparison of the population abundance at age distributions for the Split Series VPA among the average of 1973-2011, 2012, and that expected when the population is fished in equilibrium at $F_{\text {ref }}=0.25$. The equilibrium numbers at age 1 in the top panel are set equal to the average for years 19732010. The bottom panel shows the proportions at age instead of numbers.

Single Series

Figure 36b. Comparison of the population abundance at age distributions for the Single Series VPA among the average of 1973-2011, 2012, and that expected when the population is fished in equilibrium at $F_{\text {ref }}=0.25$. The equilibrium numbers at age 1 in the top panel are set equal to the average for years 19732010. The bottom panel shows the proportions at age instead of numbers.

Figure 37. Historical retrospective analysis of Georges Bank yellowtail flounder assessments from this and the previous seven TRAC Split Series VPAs for age 4+ fishing mortality (top panel), spawning stock biomass (middle panel), and age 1 recruitment (lower panel). Note there are two lines plotted for TRAC 2009 (terminal year 2008), the "Including" and "Excluding" formulations.

2012 Catch at Age

Figure 38. Catch ($m t$) at age in 2012 projected from the previous two TRAC assessments compared to the 2012 values observed in this assessment. Both projections are from the Split Series deterministic table in their respective assessment documents and do not include any retrospective adjustments.

APPENDIX

The table below was kindly initiated by Tom Nies (NEFMC). It summarizes the performance of the management system. It reports the TRAC advice, TMGC quota decision, actual catch, and realized stock conditions for Georges Bank yellowtail flounder.
(1) All catches are calendar year catches
(2) Values in italics are assessment results in year immediately following the catch year; values in normal font are results from this assessment

TRAC	Catch Year	TRAC Analysis/Recommendation		TMGC Decision		Actual Catch ${ }^{(1)} /$ Compared to Risk Analysis	Actual Result ${ }^{(2)}$
		Amount	Rationale	Amount	Rationale		
$1999{ }^{\text { }}$	1999	(1) $4,383 \mathrm{mt}$ (2) $6,836 \mathrm{mt}$	Neutral risk of exceeding Fref (1)VPA (2)SPM	NA	NA	$4,441 \mathrm{mt} / 50 \%$ risk of exceeding Fref (VPA)	Exceeded Fref (2.6X)
2000	2000	7,800 mt	Neutral risk of exceeding Fref	NA	NA	$6,895 \mathrm{mt} /$ About 30% risk of exceeding Fref	Exceeded Fref (3.6X)
2001	2001	9,200 mt	Neutral risk of exceeding Fref	NA	NA	6,790 mt/Less than 10% risk of exceeding Fref	Exceeded Fref (3.8X)
2002	2002	10,300 mt	Neutral risk of exceeding Fref	NA	NA	$6,100 \mathrm{mt} /$ Less than 1% risk of exceeding Fref	Exceeded Fref (2.5X)
Transition to TMGC process in following year; note catch year differs from TRAC year in following lines							
2003	2004		No confidence in projections; status quo catch may be appropriate	7,900 mt	Neutral risk of exceeding Fref, biomass stable; recent catches between 6,100$7,800 \mathrm{mt}$	6,815 mt	F above 1.0 Now F $=1.94$ Age 3+ biomass decreased 53% 04-05
2004	2005	4,000 mt	Deterministic; other models give higher catch but less than 2004 quota	6,000 mt	Moving towards Fref	3,851 mt	$F=1.37$ Age 3+ biomass decreased 5\% $05-06$ Now F = 1.39 Age 3+ biomass decreased 39% 05-06

[^0]| TRAC | Catch Year | TRAC Analysis/Recommendation | | TMGC Decision | | Actual Catch ${ }^{(1)} /$ Compared to Risk Analysis | Actual Result ${ }^{(2)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Amount | Rationale | Amount | Rationale | | |
| 2005 | 2006 | (1) 4,200
 (2) 2,100
 (3) 3,0003,500 | Neutral risk of exceeding F ref (1-base case; 2 - major change)
 (3) Low risk of not achieving 20\% biomass increase | $3,000 \mathrm{mt}$ | Base case TAC adjusted for retrospective pattern, result is similar to major change TAC (projections redone at TMGC) | $2,109 \mathrm{mt} /$
 (1) Less than 10% risk of exceeding Fref
 (2) Neutral risk of exceeding Fref | $F=0.89$ Age 3+ biomass increased $41 \% 06-07$ Now F $=1.54$ Age 3+ biomass decreased 3\% $06-07$ |
| 2006 | 2007 | 1,250 mt | Neutral risk of exceeding Fref; 66\% increase in SSB from 2007 to 2008 | $\begin{gathered} 1,250 \mathrm{mt} \\ \text { (revised } \\ \text { after US } \\ \text { objections } \\ \text { to a } 1,500 \\ \text { mt TAC) } \end{gathered}$ | Neutral risk of exceeding Fref | $1,662 \mathrm{mt}$
 About 75 percent probability of exceeding Fref | $F=0.29$ Age 3+ biomass increased $211 \% 07-08$ Now F=1.05 Age 3+ biomass increased 31% 07-08 |
| 2007 | 2008 | 3,500 mt | Neutral risk of exceeding Fref; 16\% increase in age 3+ biomass from 2008 to 2009 | 2,500 mt | Expect F=0.17, less than neutral risk of exceeding Fref | $1,504 \mathrm{mt}$
 No risk plot; expected less than median risk of exceeding Fref | F~0.09 Age 3+ biomass increased between $35 \%-52 \%$ Now F=0.57 Age 3+ biomass increased 7\% $08-09$ |
| 2008 | 2009 | (1) $4,600 \mathrm{mt}$
 2) $2,100 \mathrm{mt}$ | (1) Neutral risk of exceeding Fref; 9\% increase from 2009-2010
 (2) U.S.
 rebuilding plan | 2,100 mt | U.S. rebuilding requirements; expect $F=0.11$; no risk of exceeding Fref | $1,806 \mathrm{mt}$
 No risk of exceeding Fref | $F=0.15$ Age 3+ biomass increased 11% Now F=0.83 Age 3+ biomass decreased 13% 09-10 |

TRAC	Catch Year	TRAC Analysis/Recommendation		TMGC Decision		Actual Catch ${ }^{(1)} /$ Compared to Risk Analysis	Actual Result ${ }^{(2)}$
		Amount	Rationale	Amount	Rationale		
2009	2010	$\begin{gathered} \text { (1) } 5,000- \\ 7,000 \mathrm{mt} \end{gathered}$ $\begin{aligned} & \text { (2) } 450- \\ & 2,600 \mathrm{mt} \end{aligned}$	(1) Neutral risk of exceeding Fref under two model formulations (2) U.S. rebuilding requirements	No agreement. Individual TACs total 1,975 mt	No agreement	$1,160 \mathrm{mt}$ No risk of exceeding Fref About 15\% increase in median biomass expected	$F=0.13$ $3+$ Biomass increased 6\% 10- 11 Now F=0.73 Age 3+ biomass increased 6\% $10-11$
2010	2011	(1) $3,400 \mathrm{mt}$	(1) Neutral risk of exceeding Fref; no change in age 3+ biomass	2,650 mt	Low probability of exceeding Fref; expected 5\% increase in biomass from 11 to 12	$1,169 \mathrm{mt}$ No risk of exceeding Fref About 15\% increase in biomass expected	$F=0.31$ Age 3+ biomass decreased 5\% $11-12$ Now F=0.6 Age 3+ biomass decreased $14 \% 11-12$
2011	2012	$\begin{aligned} & \text { (1) } 900- \\ & 1,400 \mathrm{mt} \end{aligned}$	(1) trade-off between risk of overfishing and change in biomass from three projections	1,150 mt		722 mt	$F=0.32$ Age 3+ biomass decreased 6% $12-13$
2012	2013	$\begin{aligned} & \text { (1) } 200- \\ & 500 \mathrm{mt} \end{aligned}$	(1) trade-off between risk of overfishing and change in biomass from five projections	500 mt			

[^0]: ${ }^{1}$ Prior to implementation of US/CA Understanding

