CERT

Comité d'évaluation des ressources transfrontalières

Document de réferénce 2009/02

Ne pas citer sans autorisation des auteurs

TRAC

Transboundary Resource
Assessment Committee
Reference Document 2009/02

Not to be cited without permission of the authors

Assessment of Eastern Georges Bank Haddock for 2009

Lou Van Eeckhaute ${ }^{1}$, Elizabeth N. Brooks ${ }^{2}$, and Michele Traver 2
${ }^{1}$ Fisheries and Oceans Canada
531 Brandy Cove Road
St. Andrews, New Brunswick E5B 2L9
Canada
${ }^{2}$ NOAA/NMFS
Northeast Fisheries Science Center
166 Water Street
Woods Hole, MA 02543
USA

Abstract

The total catch of eastern Georges Bank (EGB) haddock in 2008 was $15,995 \mathrm{mt}$ of the 23,000 mt combined Canada/United States of America (USA) quota. The 2008 Canadian catch increased from 11,946 in 2007 to 14,814 mt while the USA catch increased from 541 mt in 2007 to $1,181 \mathrm{mt}$. Haddock discards from the Canadian scallop fishery and the USA groundfish fishery were estimated at 33 and 44 mt , respectively. Under restrictive management measures, combined Canada/USA catches declined from over 6,500 mt in 1991 to a low of about 2,200 mt in 1995, averaged about 3,600 mt during 1996-1999 and have increased since then.

Adult population biomass (ages 3+) has steadily increased from near an historical low of $9,100 \mathrm{mt}$ in 1993 to $81,800 \mathrm{mt}$ in 2003. It decreased to about $57,800 \mathrm{mt}$ at the beginning of 2005 but subsequently tripled to a record-high 155,600 mt in 2009, higher than the 1931-1955 maximum of about $90,000 \mathrm{mt}$. The exceptional 2003 year-class, estimated at 291 million age-1 fish, is the largest observed in the assessment time series (1931-1955 and 1969-2008). Except for the strong 2000 year-class and the exceptional 2003 year-class, recruitment has fluctuated without trend about an average of 11 million since 1990. The preliminary estimate for the 2008 year-class is below-average at 9 million fish at age 1. Fishing mortality fluctuated between 0.2 and 0.4 during the 1980s, and markedly increased in 1992 and 1993 to about 0.6, the highest observed. From 2003 to the present, the age at full recruitment to the fishery has been at age 5 (rather than age 4, previously) due to a decline in size at age of haddock. Fishing mortality was below $F_{\text {ref }}=0.26$ during 1995 to 2003, fluctuated around $F_{\text {ref }}$ during 2004 to 2006, but in 2007 and 2008 declined to 0.13 and 0.09 , respectively.

The size at age for the 2003 year-class is smaller than previous year-classes, but its rate of growth at length is similar to previous year-classes. With expanded age structure, broad spatial distribution and improved recruitment, current resource productivity is high, hindered only by recent reductions in fish weight at age.

Assuming a 2009 catch equal to the $30,000 \mathrm{mt}$ total quota, a combined Canada/USA catch of $29,600 \mathrm{mt}$ in 2010 results in a neutral risk (50\%) that the 2010 fishing mortality rate would exceed $F_{\text {ref }}=0.26$. A catch of $25,900 \mathrm{mt}$ in 2010 results in a low risk (25\%) that the 2010 fishing mortality rate will exceed $F_{\text {ref. }}$. The 2003 year-class is expected to constitute 80% of the 2010 catch biomass. Adult biomass is projected to be $94,700 \mathrm{mt}$ at the beginning of 2011, a decline from $126,300 \mathrm{mt}$ in 2010, as expected, with the passing of the 2003 year-class through the population.

RÉSUMÉ

Les captures totales d'aiglefin dans l'est du banc Georges se sont élevées en 2008 à 15995 tm , par rapport à un quota combiné de 23000 tm pour le Canada et les États-Unis. Les captures des deux pays ont augmenté, celles du Canada passant de 11946 tm en 2007 à 14814 tm en 2008, et celles des États-Unis de 541 tm en 2007 à 1181 tm en 2008. Les rejets d'aiglefin dans la pêche canadienne du pétoncle et dans la pêche américaine du poisson de fond ont été estimés à 33 tm et 44 tm , respectivement. Des mesures de gestion strictes ont fait baisser les captures combinées du Canada et des États-Unis, qui, après avoir dépassé 6500 tm en 1991, ont connu un seuil de 2200 tm en 1995; ces captures se sont situées en moyenne à 3600 tm de 1996 à 1999 et elles ont augmenté depuis.

La biomasse de la population d'adultes (âges 3+) a constamment augmenté, passant du seuil quasi historique de 9000 tm qu'elle avait connu en 1993 à 81800 tm en 2003. Elle est tombée
à environ 57800 tm au début de 2005, mais a triplé par la suite, pour atteindre un pic record de 155600 tm en 2009, soit un niveau plus élevé que le maximum de la période 1931-1955, qui était d'environ 90000 tm . L'exceptionnelle classe d'âge de 2003, estimée à 291 millions de poissons d'âge 1, est la plus abondante classe d'âge observée dans les séries chronologiques des évaluations (1931-1955 et 1969-2005). Si on en exclut la forte classe d'âge de 2000 et cette exceptionnelle classe d'âge de 2003, le recrutement a fluctué, sans présenter de tendance, alentour d'une moyenne de 11 millions de poissons depuis 1990. Selon l'estimation préliminaire, la classe d'âge de 2008 est inférieure à la moyenne et ne compte que 9 millions de poissons d'âge 1. La mortalité par pêche a fluctué entre 0,2 et 0,4 dans les années 1980 et elle a connu une nette augmentation en 1992 et 1993, se situant alors à environ 0,6, le plus haut niveau observé jusqu'ici. À partir de 2003, l'âge du plein recrutement à la pêche a augmenté, passant de l'âge 4 à l'âge 5 , en raison de la diminution de la taille selon l'âge. La mortalité par pêche a été inférieure à $F_{\text {réf. }}=0,26$ de 1995 à 2003, a fluctué alentour de $F_{\text {réf. }}$ de 2004 à 2006, puis a diminué en 2007 et 2008, se chiffrant à 0,13 et 0,09 , respectivement.

Dans la classe d'âge de 2003, la taille selon l'âge est inférieure à ce qu'elle était chez les classes d'âge précédentes, mais le taux de croissance selon la longueur est comparable à celui des classes d'âge précédentes. En raison de l'élargissement de la structure des âges, de la vaste répartition spatiale et de l'amélioration du recrutement, la productivité de la ressource est élevée à l'heure actuelle, n'ayant été ralentie que par les réductions récentes du poids selon l'âge.

Si les captures de 2009 étaient égales au quota total de 30000 tm , des captures combinées du Canada et des États-Unis de 29600 tm en 2010 se traduiraient par un risque neutre (50%) que la mortalité par pêche dépasse $F_{\text {réf }}=0,26$. Des captures de 25900 tm en 2010 aboutiraient à un faible risque (25%) que la mortalité par pêche dépasse $F_{\text {réf. }}$. La classe d'âge de 2003 devait constituer 80% de la biomasse exploitable en 2010. La biomasse des adultes devrait être de 94700 tm au début de 2011, donc en baisse par rapport à ses 126300 tm de 2010, comme on pouvait s'y attendre avec la réduction progressive de l'apport de la classe d'âge de 2003 à la population.

INTRODUCTION

For the purpose of developing a sharing proposal and consistent management by Canada and the United States of America (USA), an agreement was reached that the transboundary management unit for haddock would be limited to the eastern portion of Georges Bank (EGB; DFO statistical unit areas j and m in NAFO sub-division 5Ze; USA statistical areas 551, 552, 561 and 562 in NAFO sub-division 5Ze; Figure 1; DFO 2002). This assessment applies the approach used by Van Eeckhaute et al. (2008) to Canadian and USA fisheries information updated to 2008. Results from the Fisheries and Oceans Canada (DFO) survey, updated to 2009, and the USA National Marine Fisheries Service (NMFS) surveys in the spring and fall, updated to 2008, were incorporated. The 2009 NMFS spring survey was not used as a new vessel and net were employed and conversion factors have not yet been determined.

FISHERY

Commercial Catches

Haddock on Georges Bank have supported a commercial fishery since the early 1920s (Clark et al.1982). Catches from EGB during the 1930s to 1950s ranged between $15,000 \mathrm{mt}$ and $40,000 \mathrm{mt}$ (Figure 2), averaging about $25,000 \mathrm{mt}$ (Schuck 1951, R. Brown pers. com.). Records of catches by unit area for 1956 to 1968 have not been located, however, based on records for NAFO Subdivision 5Ze, catches from EGB probably attained record high levels of about $60,000 \mathrm{mt}$ during the early 1960s. Catches in the late 1970s and early 1980s (Table 1), ranging up to $23,344 \mathrm{mt}$, were associated with good recruitment. Substantial quantities of small fish were discarded in those years (Overholtz et al. 1983). Catches subsequently declined and fluctuated around $5,000 \mathrm{mt}$ during the mid to late 1980 s . Under restrictive management measures (Table 2), combined Canada/USA catches declined from $6,504 \mathrm{mt}$ in 1991 to a low of $2,150 \mathrm{mt}$ in 1995, varied between about $3,000 \mathrm{mt}$ and $4,000 \mathrm{mt}$ until 1999, and increased to $15,256 \mathrm{mt}$ in 2005 (Figure 3). Combined catches in 2006 and 2007 were $12,634 \mathrm{mt}$ and $12,488 \mathrm{mt}$, respectively. The total catch of EGB haddock in 2008 was $15,995 \mathrm{mt}$ under a combined Canada/USA quota of $23,000 \mathrm{mt}$. The total catch is well below the quota due to yellowtail flounder and cod restrictions on the USA fishery.

Canadian

Some elements of the management measures used on EGB are described in Table 2. Quotas are the principal means used to regulate the Canadian groundfish fisheries on Georges Bank. Quota regulation requires effective monitoring of fishery catch. Weights of all Canadian landings since 1992 were monitored at dockside. Canadian catches since 1995 have usually been below the quota due to closure of some fleet sectors when the cod quotas were reached. At-sea observers monitored 38% of otter trawl and 18% of longline trips which amounted to an observed level of 38% of the haddock landed by weight in 2008.

Between 1994 and 2004, the Canadian fishery for groundfish on EGB was not permitted from 1 January to 30 May. In 2005, increasing haddock abundance led to permission to conduct an exploratory Canadian groundfish fishery in January and February that has continued since then. So as not to adversely affect the rebuilding of cod on EGB, the exploratory winter fishery was closed February 8 in 2008 when it was determined that cod were actively spawning, i.e. when 30% of cod were in the spawning or post-spawning stages.

Canadian Catch and Landings

The Canadian catch in 2008 increased to $14,814 \mathrm{mt}$ from 11,946 mt in 2007, the highest on record since 1969. In recent years, the Canadian fishery has been conducted primarily by vessels using otter trawls and longlines with some handlines and gillnets. In 2007, all of the catch was taken by tonnage class 1, 2 and 3 (less than 150 tons) vessels, corresponding roughly to vessels less than 65 ft in overall length. Otter trawls took 85% of the haddock and longliners took 15\% (Table 3). Half of the 2008 Canadian catch was made in July, August and September (Table 4, Figure 4). The January otter trawl catch was the second highest monthly catch for that gear group. The winter fishery landed $3,471 \mathrm{mt}$ of haddock, accounting for 23% of the landings, an increase from the previous three years when it ranged from 13 to 15%.

Canadian landings until 1995 include haddock catches reported by the scallop fishery. Landings of haddock by the scallop fleet have been low (Table 3) with a maximum of 38 mt reported in 1987.

Canadian Discards

Since 1996, the scallop fishery has been prohibited from landing haddock and this species is therefore discarded. Discards from this fleet ranged between 29 and 186 mt since 1969 (Table 1;Van Eeckhaute et al. 2005, Gavaris et al. 2007). Estimated discards were revised for 2005 to 2007 to correct for a freezer trawler to wet trawler conversion calculation error (Gavaris et al. 2009). This effected a modest reduction in the discards for those years. Discards in 2008 were estimated at 33 mt .

Discarding and misreporting of haddock by the groundfish fishery have been negligible since 1992.

USA

Management measures for the USA fishery have been primarily effort based since 1994, however; in 2004, quota management was introduced to regulate the USA groundfish fishery for EGB haddock (Table 2). In 2008, the USA portion of the EGB management area was closed to vessels fishing with trawl gear from May 1 to July 31. The minimum size for landed haddock had been reduced to 18 " (45.7 cm) in October 2007 but reverted back to 19 inches (48.2 cm) in August, 2008. On September 15, 2008 the Ruhle trawl (previously called the Eliminator Trawl) was authorized for use in the USA portion of EGB management area. The Ruhle trawl is intended to reduce by-catch of cod.

USA Catch and Landings

USA landings of EGB haddock in 2008 were derived from mandatory fishing vessel reports (VTRs) and dealer reports. Statistical methodology was applied to allocate unknown landings to statistical area from 1994 to 2008 (Wigley et al. 2008a and Palmer 2008). See Appendix A for a comparison of the new landings estimates for 1989 to 2007 with those in Van Eeckhaute et al. (2008). The effect was negligible as USA landings were low compared to Canadian landings for that period and the largest change was an additional 176 mt in 2002.

USA calendar year catches (Table 1) of EGB haddock increased in 2008 to $1,181 \mathrm{mt}$ from 541 mt in 2007. Note that the estimated USA catch in 2007 was incorrectly reported as 729 mt in Van Eeckhaute et al. (2008) due to a calculation error. Landings accounted for 96% of the 2008 catch. The majority of 2008 USA landings occurred in quarter 4 ($817 \mathrm{mt}, 72 \%$; Table 5).

Landings were very low for quarter 1 and were only 131 mt and 181 mt for quarters 2 and 3, respectively. As in other years, the otter trawl gear accounted for the majority of the USA landings (1,028 mt; Table 6). The contribution by other gear, 109 mt , was 10%.

For USA fishing year May 1, 2008 to Apr. 30, 2009, the USA catch quota was 8,050 mt of which only 28% was realized. As in 2005 to 2007, catch was in part constrained by the low cod quota as well as the delayed opening of the EGB area to trawlers until August 1. The authorization to use the Ruhle trawl on September 15 may have reduced interactions with the cod quota, but the fact that the 2003 year-class had mostly attained a legal size by August 1 may also explain the increase in the landed fraction of the haddock catch.

USA Discards

A new discard estimation methodology has been developed that uses the ratio of discarded haddock to kept of all species whereas the previous method used a discarded haddock to kept haddock ratio. This ratio is calculated by year-quarter (or other suitable time step)-gear-mesh and prorated to the total landings of all species in the same time-gear category to obtain total discards (mt). Where time steps within the year are sparse, imputation is carried out. As the discarded haddock to kept of all species ratio is consistent with the ratio estimates derived for the USA assessment of Georges Bank $5 Z$ haddock, and because the method has been accepted as best available science by peer review at the Northeast Fishery Science Center, it was recommended to use the new method. Appendix A compares results from the new discard estimation methodology with the discards estimated using the previous methodology (Van Eeckhaute et al. 2008) for 1989 to 2007. The discards in recent years (2000 to present) were found to be similar to previous estimates. For some earlier years, the differences can be substantial and, in addition, there are now discards for 1989 to 1993, 1999 and 2000, previously not estimated. However, the new values do not have much impact since discards were a minor part of the catch. An exception is the new estimate for 1994 which has high uncertainty (Table B.4) and is $1,021 \mathrm{mt}$ greater than the value used previously (Table A.2) accounting for 27% of the total combined Canada/USA catch. Changes in fishery regulations and in the methods of reporting landings may have contributed to the overall uncertainty of the 1994 discard estimate.

Total discards in 2008 were 44 mt , a substantial reduction from 298 mt in 2007 and 275 mt in 2006 (Table 1). Most of the discards (56\%) occurred in quarter 4 (Table 7). USA discards from the large mesh otter trawl fishery decreased from 283 mt in 2007 to 36 mt in 2008 (Appendix Table B.3). Discards from this fleet accounted for 3\% (by weight) of the haddock catch in 2008. Longline, small mesh otter trawl and the scallop fisheries contributed small amounts of discards in 2008.

Size and Age Composition

Canadian

The size and age composition of haddock in the 2008 Canadian groundfish fishery was characterized using port and at-sea samples from all principal gears by calendar quarters (Table 8). For trips that were sampled by both at-sea observers and port samples, the length frequencies were combined to ensure that samples were used in a consistent manner. The size composition of haddock discards in the 2008 Canadian scallop fishery was characterized by quarter using length samples obtained from 23 observed scallop trips. The 2008 DFO survey ages, augmented with port samples, were applied to the first quarter landings and discard
length compositions and fishery age samples for quarters 2, 3 and 4 were applied to the corresponding length compositions for both the groundfish fishery and discards.

The modal length of haddock landings in the Canadian fisheries was 48.5 cm for otter trawlers and longliners (Figure 5). The modal length for quarter $4,50.5 \mathrm{~cm}$, was slightly larger than the other quarters at 48.5 cm (Figure 6). Gill-netters caught few haddock. The percentage of haddock below 43 cm in the groundfish fishery decreased from 10% and 9% in 2006 and 2007, respectively, to 3% in 2008. Haddock discarded by the scallop fleet had a modal length of 46.5 cm .

The 2003 year-class dominated all quarters of the catch but the contribution from the 2000 yearclass (age 8) in quarter 1, 16\%, was higher than for other quarters (Table 9 and Figure 7).

USA
USA landings of EGB haddock are sorted into "large" and "scrod" market categories at sea and are sampled in port for lengths and ages. Landings of large haddock totaled about 147 mt and scrod haddock totaled 977 mt in 2008 (Table 7). Length sampling for USA EGB landings in 2008 were limited so landings at length (Figure 8) and age (Table 9) were estimated for halfyears rather than quarters. There were a total of 1,461 lengths of EGB commercial landings and a total of 752 ages.

Landings at age from 1991 to 2005 were revised to reflect the recalculated landings using a scalar adjustment. The scalar was determined by dividing new landings by the old landings from the previous assessment (Van Eeckhaute et al. 2008) and applied to the old landings at age. The distribution of ages was not expected to differ as the length frequencies used to estimate landings at age remained the same. The landings at age for 2006 to 2007 were recalculated using the usual methodology of applying length and age samples to landings at the semi-annual level and similarly for the 2008 landings.

USA fishermen are required to discard haddock under the legal size limit (19 inches but reduced to 18 inches for Aug. 9, 2007 to Aug. 2008). USA discards at age of Georges Bank haddock for calendar year 2008 in EGB were estimated quarterly from at-sea observer data. The total number of observed trips doubled from 78 in 2007 to 157 in 2008 (Appendix Table B.1). Due to low sampling, length frequencies from EGB were augmented with samples from the adjacent areas of 522 and 525 (Table 7). As most of the discarding was due to the otter trawl fleet, there were few length samples from remaining gears (hook, gillnet, and 'other'). Available length frequencies were compared by gear, and both the range of observations, and the modal length, appeared similar. Therefore, length samples were combined across gears. The resulting combined length frequencies by quarter were converted to discarded number at age by applying the age length keys from the NMFS bottom trawl spring survey (212 ages) to quarters 1 and 2 and fall survey (346 ages) to quarters 3 and 4.

Observer data are available for 1989 to 2008 (Appendix Table B.1). Discards at age were not revised for 1989 to 2000 as discards were usually low compared to the combined Canada/USA landings (Table 1) and an age structure was not readily available for years when no discards had been reported in previous assessments (Appendix Table A.2). Although the new discard estimate for 1994 accounts for a large portion of the combined catch, no adjustment to the discards at age were made due to the uncertainty of this estimate. Discard at age estimates for 2001 to 2007 were revised by a scalar determined by dividing the new discard estimates (total annual, mt) by the existing discard estimates from the previous assessment. This ratio was multiplied by discards at age (see Wigley et al. 2008b for ratio estimator details). The
distribution of ages was not expected to differ as the observer length frequency data, used to characterize the discards, remained the same.

The length composition of USA landings (Figure 9) had a single mode at 50.5 cm , similar to the Canadian fishery. The modal length of discards was 46.5 cm , in between the two minimum sizes in effect during 2008, (45.7 cm and 48.2 cm). The 2003 year-class dominated the catch (Table 9, Figure 10).

Ageing Precision and Accuracy

Inter-reader agreement testing between the NMFS and DFO labs was completed and intrareader testing was undertaken at the NMFS lab. Ages of survey and commercially caught haddock were independently assigned ages by each of the DFO and the NMFS age readers, L. Van Eeckhaute and S. Sutherland, respectively. High agreement was attained, indicating that age determinations at both labs continue to be reliable (Table 10, http://www.nefsc.noaa.gov/fbi/QA-QC/age-results.html). Age reader agreement was judged to be satisfactory for estimating catch at age.

Combined Canada/USA Catch at Age

The 2008 Canadian and USA landings and discards at age estimates by quarter (Table 9) were summed to obtain the combined annual catch at age and appended to the 1969-2007 catch at age data (Table 11; Figure 11) which has been revised to reflect changes in USA methodology (Appendix A). The contribution from older ages in recent years has increased when compared to the 1990s. The age composition of the catch projection made in 2007 for 2008 agrees well with the observed (Figure 12). The 2003 year-class (age 5) dominated the fishery in 2008. Average fishery weights at age are presented in Table 12 and Figure 13 and 14 and lengths at age in Table 13.

The dominant age group in the fishery has changed from ages 2 and 3 during earlier periods to age 4 in 1995 to 2004 (Figure 15) due primarily to a change in mesh type and an increase in mesh size (Table 2). The 2005 to 2008 age composition reflects its domination by the 2000 and 2003 year-classes. The age composition during the 1969 to 1974 period was atypical since it was dominated by the outstanding 1962 and 1963 year-classes which continued to contribute substantially at ages 6 and older.

ABUNDANCE INDICES

Research Surveys

Surveys of Georges Bank have been conducted by DFO each year (February/March) since 1986 and by NMFS each fall (October/November) since 1963 and each spring (April) since 1968. All surveys use a stratified random design (Figure 16 and 17). The CCGS Alfred Needler is the standard vessel used for the DFO Georges Bank survey, but, due to unavailability of the CCGS Alfred Needler, the CCGS Wilfred Templeman, a sister ship to the CCGS Alfred Needler, has been used in several years, 1993, 2004, 2007 and 2008. No conversion factors are available for the CCGS Wilfred Templeman, however; this vessel is considered to be similar in fishing strength to the CCGS Alfred Needler. For the NMFS surveys, two vessels have been employed and there was a change in the trawl door type in 1985. Vessel and door type conversion factors (Table 14), derived experimentally from comparative fishing, have been applied to the survey results to make the series consistent (Forrester et al. 1997). Additionally
two different trawl nets have been used on the NMFS spring survey, a modified Yankee 41 during 1973-81 and a Yankee 36 in other years, but no conversion factors are available for haddock. The 2009 NMFS spring survey was conducted with their new vessel, the NOAA RV Henry B. Bigelow, and new net (4 seam, 3 bridle). No conversion factors were available for this assessment so the 2009 results were not used in this assessment.

The spatial distribution of catches by age group (1, 2, and 3+ for spring and 0, 1 and $2+$ for fall) for the most recent survey is shown in comparison to the average distribution over the previous 10 year period (Figure 18 and 19). Catches of ages 0,1 and 2 were relatively low, although there was a good catch of age 0 (2008 year-class) haddock on the USA side on the southern flank near the boundary line from the NMFS fall survey. As has been observed for other large year-classes, the 2003 year-class, as the major component of the 3+ group, was abundant and widely distributed on the Canadian side of the bank during the 2009 DFO survey. This survey found no catches of haddock on the USA side. Ages 2+, dominated by the 2003 year-class, in the NMFS 2008 fall survey were found on the northern edge in large numbers similar to the 10year average distribution. Haddock usually display greater movement westward later in the spring, a distribution pattern which has been persistent from year to year as evidenced from past NMFS spring surveys (Figure 20).

Age-specific, swept area abundance indices show that the three surveys are consistent and track year-class strengths well (Table 15, 16 and 17; Figure 21). Some year effects are evident. For example, low spring catches occurred in 1997 in both the DFO and NMFS surveys. Survey adult biomass indices (ages 2-8 in fall; 3-8 in spring) peaked during the early 1960s (Figure 22). After declining to a record low in the early 1970s, they peaked again in the late 1970s, though at a lower level, and again during the mid to late 1980s at about half the level of the 1970s peak. Adult biomass generally increased during the 1990s and 2000s. Since about 2003, the adult biomass indices have been fluctuating without trend at a high level. Both DFO spring and NMFS fall adult biomass indices saw a decrease in the most recent year.

The index values for the 2003 year-class are the highest in their respective time series. The latest 2003 year-class index point for both surveys decreased by at least 50% (Table 15 and 17). The 2007 year-class indices, when scaled by their calibration constants, have decreased from age 0 to age 1, and from age 1 to age 2 in the NEFSC fall and DFO survey, respectively. The 2008 year-class recruitment indices were better than those for the 2001 and similar to the 2004, 2006 and 2007 year-classes (Figure 23).

GROWTH

Canadian fishery weights at age (Table 12, Figure 13 and 14) in 2008 increased for ages 1 to 5 and 8, but decreased for ages 6 and 7. In 2009, DFO survey weights at age (Table 18 and Figure 13 and 15) increased for all ages except age 7. The survey lengths at age also increased for the same ages except for ages 5, 6 and 7, which decreased (Table 19 and Figure 24). This continues the increasing trend that started around 2005 or 2006 for the younger ages after displaying a decreasing trend since about 2000. The downward trend for ages 5 to 8, apparent since the late 1990s, appears to have leveled off at a low level. Average size at age for older haddock has declined substantially so that haddock age 4 and older are now at or smaller than the size that the next younger age group was in previous years before the declines occurred. However, the 2006 to 2008 year-classes average survey weights and lengths at age are nearing the sizes that were seen in the 1990s.

Weights at age from the DFO survey are considered beginning of year population weights and are calculated using the method described in Gavaris and Van Eeckhaute (1998) in which weights observed from the survey are weighted by population numbers at length and age. Fishery weights are derived from the lengths using a length-weight relationship (Waiwood and Neilson 1985).

HARVEST STRATEGY

The Transboundary Management Guidance Committee (TMGC 2003) has adopted a strategy to maintain a low to neutral risk of exceeding the fishing mortality limit reference, $\mathrm{F}_{\text {ref }}=0.26$. When stock conditions are poor, fishing mortality rates should be further reduced to promote rebuilding.

ESTIMATION OF STOCK PARAMETERS

Calibration of Virtual Population Analysis (VPA)

Calibrated Virtual Population Analysis (VPA) was used to estimate stock parameters. The adaptive framework, ADAPT, (Gavaris 1988) was used to calibrate the VPA with the research survey data. Details of the model formulations and model assumptions can be found in Gavaris and Van Eeckhaute (1998). Minor changes that were made since 1998 have been incorporated including modifications that were used in the previous year's assessment (Van Eeckhaute et al. 2008): 1) an annual catch at age instead of a quarterly catch at age, 2) revised survey timing, and 3) a change from ages 4 to 7 to 5 to 7 used to estimate oldest age F from 2003 to present.

The VPA was based on an annual catch at age, $C_{a, t}$ for ages $a=0,1,2 \ldots 8,9+$, and time $t=1969,1970 \ldots 2008$ where t represents the beginning of the time interval during which the catch was taken. Catch discards were included in the catch at age. The population was calculated to the beginning of 2009. The VPA was calibrated to bottom trawl survey abundance indices, $I_{s, a, t}$ for
$s=$ DFO, ages $a=1,2,3 \ldots 8$, time $t=1986.17,1987.17 \ldots 2008.17,2009.00$
$s=$ NMFS spring (Yankee 36), ages $a=1,2,3 \ldots 8$, time $t=1969.281970 .28, \ldots 2008.28$
$s=$ NMFS spring (Yankee 41), ages $a=1,2,3 \ldots 8$, time $t=1973.28,1974.28 \ldots 1981.28$
$s=$ NMFS fall, ages $a=0,1,2 \ldots 5$, time $t=1969.79,1970.79 \ldots 2008.79$. Since the population is calculated to beginning year 2009, the DFO spring survey in 2009 was designated as occurring at time 2009.00. The 2009 NMFS spring survey could not be used as conversion factors for the new vessel and net were not available.

Statistical properties of estimators were determined using conditional non-parametric bootstrapping of model residuals (Efron and Tibshirani 1993, Gavaris and Van Eeckhaute 1998). Population abundance estimates at age 1 and 2 exhibited a large relative error of 77% and 42%, respectively, and a large relative bias at age 1 of 19%, while the relative error for other ages was between 18% and 35% with a relative bias for ages 2 and older between 1% and 8% (Table 20). While trends in the three surveys are generally consistent, the survey indices exhibit high variability and the average magnitude of residuals is large relative to other assessments. Although several large residuals were apparent, these do not appear to have a
substantial impact on estimates of current abundance (Figure 25 to 29). Some patterns in the residuals (by cohort and by age) suggest year-class and/or year effects.

Retrospective Analysis

Retrospective analyses were used to detect any patterns to consistently overestimate or underestimate fishing mortality, biomass and recruitment relative to the terminal year estimates. This stock assessment does not display a retrospective pattern. While recruitment estimates may sometimes change substantially when more data becomes available, e.g., the 1998, 2000 and 2003 year-classes, successive estimates of year-class abundance at age do not display any persistent tendency to be higher or lower (Figure 30). Similarly, retrospective analysis showed no persistent patterns in the estimates of adult biomass (ages 3-8) or fishing mortality (ages 4-8 weighted by population numbers) (Figure 31).

STATE OF RESOURCE

Evaluation of the state of the resource was based on results from the VPA for the years 1969 to 2008. For each cohort, the terminal population abundance estimates from ADAPT were adjusted for bias estimated from the bootstrap, and used to construct the history of stock status (Table 21 and 22). This approach for bias adjustment was considered preferable to using potentially biased point estimates of stock parameters (O'Boyle 1998). The weights at age from the DFO survey (Table 18) were used to calculate beginning of year population biomass (Table 23). A weight of 2.4 kg , which was midway between the age 6 and 8 weight for that cohort, was used for age 7 in 1995 as no data were available for that age group. The 1986-95 average weight at each age was used for 1969-85.

The adult (ages $3+$) biomass trend compared favorably with the survey adult biomass trends (scaled with catchabilities; Figure 32). Adult biomass increased to $38,000 \mathrm{mt}$ during the late 1970s and early 1980s due to recruitment of the strong 1975 and 1978 year-classes whose abundances were estimated to be above 50 million age-1 fish each (Figure 33). However, adult biomass declined rapidly in the early 1980s as subsequent recruitment was poor and these two cohorts were fished intensely at ages 2 and 3. Improved recruitment in the 1990s and the strong 2000 year-class (82 million at age 1), lower exploitation, and reduced capture of small fish in the fisheries allowed the biomass to increase from near an historical low of $9,100 \mathrm{mt}$ in 1993 to $81,800 \mathrm{mt}$ in 2003. Adult biomass decreased to $57,800 \mathrm{mt}$ in 2005 but subsequently increased to $155,600 \mathrm{mt}(80 \%$ Confidence Interval: $124,200 \mathrm{mt}-186,600 \mathrm{mt}$, Figure 34) in 2009, higher than the 1931-1955 maximum adult biomass of about $90,000 \mathrm{mt}$. The tripling of the biomass after 2005 was due to the exceptional 2003 year-class, estimated at 291 million age 1 fish, the largest in the assessment time series (1931-1955 and 1969-2008). In contrast, the 2001, 2002, 2004 and 2006 year-classes, at less than 8 million fish, are below the average of 11 million since 1990 (excludes the 2000 and 2003 year-classes). The 2005 year-class (24.6 million age 1 fish) is well above this average. The 2007 year-class presently appears to be near average at 11.8 million fish at age 1. The preliminary estimate for the 2008 year-class is below average at 9 million fish at age 1.

Fishing mortality (population weighted average of fully recruited ages) fluctuated between 0.2 and 0.5 during the 1980s, and markedly increased in 1992 and 1993 to about 0.6, the highest observed (Table 22, Figure 35). From 2003 onwards, the age at full recruitment into the fishery has been at age 5 (rather than age 4 as in previous years) due to a decline in size at age of haddock. Comparison of age 4 and 5 fishing mortality (Table 22) and average weights at age from the fishery and survey (Figure 14) indicate that full recruitment to the fishery since 2003
occurs around age 5. Fishery weights are approaching survey (population) weights at age 5, and, when beginning of year to mid-year growth is accounted for, indicate that age 5 fish are fully selected by the fishery. Fishing mortality (ages 4+ for pre-2003 and ages 5+ for 2003 onwards) was below $F_{\text {ref }}=0.26$ during 1995 to 2003, fluctuated around $F_{\text {ref }}$ during 2004 to 2006, but in 2007 declined to 0.13 and again in 2008 to 0.09 (80% Confidence Interval: 0.07 - 0.11 , Figure 34). The determination of $\mathrm{F}_{\text {ref }}$ was based on analyses that assumed full recruitment to the fishery for ages 4 and older.

The partial recruitment at age for EGB haddock has decreased in recent years (Table 24 and 25; Figure 36) and, consequently, fishing mortality based on ages 5+, as fully recruited, has been consistently higher than F for ages $4+$ since 2003 (Figure 35). This is most noticeable for 2004 and 2007, years when the large 2000 and 2003 year-classes were age 4 and had a large effect on the $4+\mathrm{F}$. Lower weights at age have resulted in a reduced partial recruitment at age so that age 4 is now no longer fully recruited to the fishery. Therefore, partial recruitment estimates for ages 1 to 4 for recent years are more appropriately normalized on ages 5-8.

Gains in fishable biomass may be partitioned into those associated with somatic growth of haddock which have previously recruited to the fishery, and those associated with new recruitment to the fishery (Rivard 1980). We used age 2 as the age of first recruitment to the fishery. This choice facilitated comparisons with historic stock productivity but may be less representative of the current fishery selectivity. Since 1993, except for 1996, 2001, 2003 and 2004, surplus production (biomass gains from growth and from recruitment, decremented by losses due to natural deaths) has exceeded fishery harvest yields, resulting in net population biomass increases (Figure 37). Growth of fish is the dominant component of the biomass gain but recruitment accounts for significant portions when stronger year-classes enter the population, e.g. the 2000 year-class in 2002 and the 2003 year-class in 2005 (Figure 38). The biomass contributed by the 2003 year-class, both when it recruited at age 2 and through growth during that year was greater than that of any other previous cohort since 1969.

PRODUCTIVITY

Recruitment, as well as age structure, spatial distribution and fish growth reflect changes in the productive potential.

Data to approximate the age composition of the catch from unit areas 5Zj and 5Zm during 1931 to 1955 were used to reconstruct a population analysis of EGB that was suitable for comparison of productivity to recent years (Gavaris and Van Eeckhaute 1997, Figure 33). Recruitment, while highly variable, has generally been higher when adult biomass has been above 40,000 mt (Figure 39). Since 1969, only the 1975, 1978, 2000 and 2003 year-classes have been above the average abundance of year-classes observed during the period 1931-55. The recruits per adult biomass ratio was generally low during the 1980s but higher during the 1990s, comparable to that in the 1931-1955 period (Figure 40), when the $3+$ biomass was above $40,000 \mathrm{mt}$. Since 2001, with the exception of 2003 and 2005, recruits per spawner have again been low.

In both absolute numbers and percent composition, the population age structure displays a broad representation of age groups (Figure 41), reflecting improving recruitment and lower exploitation, particularly at younger ages, since 1995.

The spatial distribution patterns observed during the most recent bottom trawl surveys were similar to the average patterns over the previous ten years. Consistent with the pattern observed for previous exceptional year-classes, the 2003 year-class, the main component of the

3+ age group, was widely distributed throughout the survey area on the Canadian side (Figure 19), the usual distribution for that time of year.

DFO survey average weights at length for 6 length groups, used to reflect fish condition, exhibit a declining trend since the late 1990s but were at or near the series average in 2009 (Figure 42). Both length and weight at age started declining about the year 2000 but size at age has been increasing for the younger age groups for the last few years although weights in 2009 remain below the 1991 to 2000 average (Table 18). The size at age for the 2003 year-class is smaller than previous year-classes, but its rate of growth at length is similar to previous yearclasses (Figure 43).

In summary, with expanded age structure, broad spatial distribution and improved recruitment, resource productivity is currently high, hindered only by the recent reductions in fish size at age.

OUTLOOK

This outlook is provided in terms of consequences with respect to the harvest reference points for alternative catch quotas in 2010. Uncertainty about standing stock generates uncertainty in forecast results which is expressed here as the risk of exceeding $\mathrm{F}_{\text {ref }}=0.26$. The risk calculations assist in evaluating the consequences of alternative catch quotas by providing a general measure of the uncertainties. However, they are dependent on the data and model assumptions and do not include uncertainty due to variations in weight at age, partial recruitment to the fishery, natural mortality, systematic errors in data reporting or the possibility that the model may not reflect stock dynamics closely enough.

Except for the 2003 and 2005 year-classes, for projections, for the population weights at age, the most recent year survey weights (Table 18) and, for catch weights at age, the most recent year fishery weights (Table 12) were used. When values were poorly estimated (i.e. age 8 for population and age 7 for fishery), then the last 3 year average was used. The fishery partial recruitment was based on the average of the most recent five years, 2004 to 2008 (Table 25). Ages 6 to 8 were considered fully recruited. The observed partial recruitment value of 0.4 for age 9+ (average for 2004-2008) was used, otherwise, the model would project large catches that have not been seen in recent years.

The 2003 year-class has been the most influential component of the catch projection for the last few assessments and projection input values of weight at age for this cohort have been derived by accounting for the reduced growth rate observed for this year-class (Van Eeckhaute and Brodziak 2006, Van Eeckhaute et al. 2007, Van Eeckhaute et al. 2008). The 2005 cohort is the next most influential and values for this year-class were also derived similarly to the 2003 yearclass.

Beginning year lengths for the 2003 and 2005 cohorts were estimated using the relationship between growth rate and length from the 1998, 1999 and 2000 year-classes (Figure 44). Data points at younger ages were excluded as the addition of these points changed the functional relationship from linear to curvilinear. The predicted growth rate at length was applied to the 2009 DFO survey average length for the 2003 year-class (49.3 cm at age 6) to obtain the beginning of year length at age 7, i.e. $L_{\text {age } 7}=L_{\text {age } 6} \times e^{\text {growth rate }}$, and then sequentially, for age 8 using the growth rate predicted for the length at age 7 (Table 26).

Average fishery lengths were determined from the relationship between beginning year length (Table 19) and the fishery length (Table 13) in the same year using data from 1995 to 2006
(Figure 45 and 46). During this period the Canadian mobile gear fishery was using square mesh after having used diamond mesh previously. The resulting 2003 and 2005 year-class predicted lengths used for the population and fishery are compared to other year-classes in Figure 47. The length estimates were then converted to weights using the length weight relationship used to convert the Canadian fishery lengths to weights (Waiwood and Neilson 1985). Beginning of year weights at age were reduced by 10% to account for the reduction in observed weights relative to those derived from the length weight relationship (Table 27). Weights at age for the fishery, derived from the length weight relationship, were considered appropriate as this relationship is based on fishery data (Table 28).

The relationship between partial recruitment values and fishery weights, which reflect fishery lengths, was used to determine partial recruitment values for the 2003 and 2005 year-classes. The Canadian groundfish fishery switched from diamond mesh to square mesh around 1995 so data from 1995 to 2008 were used to determine this relationship (Figure 48). A drop in age 4 partial recruitment compared to age 5 is observed after 2002 (Table 24). Therefore, the 1995 to 2002 partial recruitment values were based on ages $4-8$ as fully recruited while the 2003 to 2008 values were based on ages 5-8. A value of 0.82 for age 6 in 2009 was determined. For age 7 in 2010, 0.95 was derived from this relationship but was judged to be close enough to fully recruited to use a value of 1 . Values of 0.57 for age 4 in 2009 and 0.86 for age 5 in 2010 were derived for the 2005 year-class. The age 5 value of 0.9 in 2009 created a bump in the partial recruitment pattern which was seen to be inappropriate; therefore, a partial recruitment of 0.7 was assigned for this age and year (Table 29).

Stock size estimates at the beginning of 2009 were used to start the forecasts. Abundance of the 2009 and 2010 year-classes were assumed to be 20 million at age 1, which is near the previous 10-year average (2003 year-class excluded). Natural mortality was assumed to be 0.2.

A risk assessment was conducted to beginning year 2011 which incorporated these patterns in growth and partial recruitment (Table 29). Assuming a 2009 catch equal to the $30,000 \mathrm{mt}$ total quota, a combined Canada/USA catch of $29,600 \mathrm{mt}$ in 2010 results in a neutral risk (50\%) that the 2010 fishing mortality rate would exceed $\mathrm{F}_{\text {ref }}=0.26$ (Table 30 , Figure 49). A catch of $25,900 \mathrm{mt}$ in 2010 results in a low risk (25\%) that the 2010 fishing mortality rate will exceed $\mathrm{F}_{\text {ref }}$. Adult biomass is projected to be $94,700 \mathrm{mt}$ at the beginning of 2011, a decline from $126,300 \mathrm{mt}$ in 2010 as expected with the passing of the 2003 year-class through the population. The 2003 and 2005 year-classes are expected to comprise 80% and 10% of the 2010 catch biomass, respectively. Ages $8+$ are expected to account for 5% of the catch biomass, 4% by numbers.

SPECIAL CONSIDERATIONS

Catches for several years into the future will be dependent on the 2003 year-class. The size at age for the 2003 year-class is smaller than previous year-classes, but, its rate of growth at length is similar. Consequently, current indications suggest that the 2003 cohort could eventually achieve a typical adult size. Size at age 1 of the 2007 and 2008 year-classes is similar to year-classes before 2000.

Cod and haddock are often caught together in groundfish fisheries, although their catchabilities to the fisheries differ and they are not necessarily caught in proportion to their relative abundance. With current fishing practices and catch ratios, the achievement of rebuilding objectives for cod may constrain the harvesting of haddock. Modifications to fishing gear and practices, with enhanced monitoring, may mitigate these concerns.

ACKNOWLEDGEMENTS

G. Donaldson and D. Frotten of DFO and at sea observers from Javitech Ltd. provided samples from the Canadian fishery and Sandy Sutherland provided ageing information for the USA surveys and fishery. We thank members of the fishing industry who spent time to discuss their experiences in the fishery. We also thank DFO and NMFS reviewers for their suggestions to improve the document.

LITERATURE CITED

Clark, S.H., W.J. Overholtz, and R.C. Hennemuth. 1982. Review and Assessment of the Georges Bank and Gulf of Maine Haddock Fishery. J. Northw. Atl. Fish. Sci. 3: 1-27.

Cleveland, W. 1979. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Amer. Stat. Assoc. 74: 829-836.

DFO. 2002. Development of a Sharing Allocation Proposal for Transboundary Resources of Cod, Haddock and Yellowtail Flounder on Georges Bank. DFO Mar. Prov., Reg. Fish. Manag. Rep. 2002/01:59 p.

Efron, B., and R.J. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman \& Hall. New York. 436p.

Forrester, J.R.S., C.J. Byrne, M.J. Fogarty, M.P. Sissenwine, and E.W. Bowman. 1997. Background Papers on USA Vessel, Trawl, and Door Conversion Studies. SAWISARC 24 Working Paper Gen 6. Northeast Fish. Sci. Cent., Woods Hole, MA.

Gavaris, S. 1988. An Adaptive Framework for the Estimation of Population Size. CAFSAC Res. Doc. 88/29: 12 p .

Gavaris, S., G. Robert, and L. Van Eeckhaute. 2007. Discards of Atlantic Cod, Haddock and Yellowtail Flounder from the 2005 and 2006 Canadian Scallop Fishery on Georges Bank. TRAC Ref. Doc. 2007/03: 10 p.

Gavaris, S., and L. Van Eeckhaute. 1997. Assessment of Haddock on Eastern Georges Bank. DFO CSAS Res. Doc. 97/54: 72 p

Gavaris, S., and L. Van Eeckhaute. 1998. Assessment of Haddock on Eastern Georges Bank. DFO CSAS Res. Doc. 98/66: 75 p.

Gavaris, S., J. Sameoto, A. Glass, and I. Jonsen. 2009. Discards of Atlantic Cod, Haddock and Yellowtail Flounder from the 2008 Canadian Scallop Fishery on Georges Bank. TRAC Ref. Doc. 2009/05: 25p.

O'Boyle, R.N. (Chair). 1998. Proceedings of the Transboundary Resource Assessment Committee; 20-24 April 1998. CSAS Proc. Ser. 98/10: 49p.

Overholtz, W.J., S.H. Clark, and D.Y. White. 1983. A Review of the Status of the Georges Bank and Gulf of Maine Haddock Stocks for 1983. Woods Hole Lab. Ref. Doc. 83-23, NOAA, NMFS, p.1-33.

Palmer, M. 2008. A Method to Apportion Landings with Unknown Area, Month and Unspecified Market Categories Among Landings with Similar Region and Fleet Characteristics. Groundfish Assessment Review Meeting (GARM III-Biological Reference Points Meeting). Working Paper 4.4. 9 p.

Rivard, D. 1980. Back-Calculating Production from Cohort Analysis, with Discussion on Surplus Production for Two Redfish Stocks. CAFSAC Res. Doc. 80/23: 26 p.

Schuck, H.A. 1951. Studies of Georges Bank Haddock, Part I: Landings by Pounds, Numbers and Sizes of Fish. Fish. Bull. U.S., 52: 151-176.

TMGC. 2003. Transboundary Management Guidance Committee Guidance Document 2003/1: 7 p.

Van Eeckhaute, L., S. Gavaris, and H. Stone. 2005. Estimation of Cod, Haddock and Yellowtail Flounder Discards from the Canadian Georges Bank Scallop Fishery from 1960 to 2004. DFO TRAC Ref. Doc. 2005/02: 21 p.

Van Eeckhaute, L., and J. Brodziak. 2006. Assessment of Eastern Georges Bank Haddock for 2006. TRAC Ref. Doc. 2006/06: 76 p.

Van Eeckhaute, L., M. Traver, and R. Mayo. 2007. Assessment of Eastern Georges Bank Haddock for 2007. TRAC Ref. Doc. 2007/07: 77 p.

Van Eeckhaute, L. Brooks, and L., M. Traver. 2008. Assessment of Eastern Georges Bank Haddock for 2008. TRAC Ref. Doc. 2008/02: 81 p.

Waiwood, K.G., and J.D. Neilson. 1985. The 1985 Assessment of 5Ze Haddock. CAFSAC Res. Doc. 85/95:49 p.

Wigley S.E., P. Hersey, J.E. Palmer. 2008a. A Description of the Allocation Procedure Applied to the 1994 to 2007 Commercial Landings Data. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 08-18; 61 p.

Wigley, S.E., M.C. Palmer, J. Blaylock, and P.J. Rago. 2008b. A Brief Description of the Discard Estimation for the National By-Catch Report. Northeast Fish. Sci. Cent. Ref. Doc. 08-02; 35 p.

Table 1. Nominal catches (mt) of haddock from eastern Georges Bank (EGB) during 1969-2008. For "Other" it was assumed that 40\% of the total $5 Z$ catch was in EGB. USA landings and 1989 to 2007 USA discards have been revised (see text). Canadian discards are from the scallop fishery and USA discards are from the groundfish fishery.

Year	Landings			Discards		Totals			Quotas	
	Canada	USA	Other	Canada	USA	Canada	USA	Catch	Canadian	USA ${ }^{2}$
1969	3941	6624	695	123		4064	6624	11382		
1970	1970	3154	357	116		2086	3154	5597		
1971	1610	3533	770	111		1721	3533	6024		
1972	609	1551	502	133		742	1551	2795		
1973	1565	1397	396	98		1663	1397	3455		
1974	462	955	573	160	757	622	1712	2907		
1975	1353	1705	29	186		1539	1705	3273		
1976	1355	974	24	160		1515	974	2513		
1977	2871	2428		151	2966	3022	5394	8416		
1978	9968	4725		177	1556	10145	6281	16426		
1979	5080	5213		186		5266	5213	10479		
1980	10017	5615		151	7561	10168	13176	23344		
1981	5658	9081		177		5835	9081	14916		
1982	4872	6286		130		5002	6286	11287		
1983	3208	4453		119		3327	4453	7780		
1984	1463	5121		124		1587	5121	6708		
1985	3484	1684		186		3670	1684	5354		
1986	3415	2201		92		3507	2201	5708		
1987	4703	1418		138		4841	1418	6259		
1988	$4046{ }^{1}$	1694		151		4197	1694	5891		
1989	3060	785		138	137	3198	922	4121		
1990	3340	1189		128	76	3468	1265	4732		
1991	5456	931		117	0	5573	931	6504		
1992	4058	1629		130	9	4188	1638	5826	5000	
1993	3727	424		114	106	3841	530	4371	5000	
1994	2411	24		114	1279	2525	1302	3827	3000	
1995	2065	15		69	0	2134	16	2150	2500	
1996	3663	26		52	5	3715	31	3746	4500	
1997	2749	55		60	1	2809	56	2865	3200	
1998	3371	271		102	0	3473	271	3744	3900	
1999	3681	359		49	5	3729	364	4093	3900	
2000	5402	340		29	3	5431	343	5774	5400	
2001	6774	762		39	22	6813	784	7597	6989	
2002	6488	1090		29	16	6517	1106	7623	6740	
2003	6775	1677		98	96	6874	1772	8646	6933	
2004	9745	1847		93	235	9838	2081	11919	9900	5100
2005	14484	649		48	76	14532	724	15256	15410	7590
2006	11984	313		62	275	12047	588	12634	14520	7480
2007	11890	243		56	298	11946	541	12488	12730	6270
2008	14781	1136		33	44	14814	1181	15995	14950	8050

${ }^{1} 1895 \mathrm{mt}$ excluded because of suspected area misreporting.
${ }^{2}$ The USA quota pertains to the USA fishing year of May 1 to Apr. 30 while the USA catches reported in this table pertain to the calendar year.

Table 2. Regulatory measures implemented for the $5 Z$ and eastern Georges Bank (EGB) fishery management units by the United States (USA) and Canada, respectively, from 1977, when jurisdiction was extended to 200 miles for coastal states, to the present.

	USA	Canada
1977-82	Mesh size of $51 / 8^{\prime \prime}(140 \mathrm{~mm})$, seasonal spawning closures, quotas and trip limits.	
1982-85	All catch controls eliminated, retained closed area and mesh size regulations, implemented minimum landings size (43 cm).	First 5Ze assessment in 1983.
Oct. 1984	Implementation of the 'Hague' line, the boundary between Canada and the USA.	
1985	$5^{1 / 2 \prime \prime}$ mesh size, Areas 1 and 2 closed February-May.	
1989		Combined cod-haddock-pollock quota for 4X5Zc
1990		EGB adopted as management unit. For mobile gear (MG) < 65 ft . - trip limits with a 30% by-catch of haddock to a maximum of 8 trips of $35,000 \mathrm{lbs}$ per trip between June 1 and Oct. 31 and 130 mm square mesh required. Fixed gear required to use large hooks until June
1991	Established overfishing definitions for haddock.	MG < 65 ft similar to 1990 but mesh size increased to 145 mm diamond.
1992		Introduction of Individual Transferable Quotas (ITQ) and dockside monitoring. Total allowable catch $(T A C)=5000 \mathrm{mt}$.
1993	Area 2 closure in effect from Jan 1-June30.	Otter trawl (OT) fishery permitted to operate in Jan. and Feb. Increase in use of square mesh. TAC $=5000$ mt.
1994	Jan.: Expanded Area 2 closure to include June and increased extent of area. Area 1 closure not in effect. 500 lb trip limit. Catch data obtained from mandatory log books combined with dealer reports (replaces interview system). May: 6" mesh restriction. Dec.: Area 1,2 closed year-round.	Spawning closure extended to Jan. 1 to May 31. Fixed gear vessels must choose between $5 Z$ or 4 X for the period of June to September. Small fish protocol. Increased at sea monitoring. OT > 65 could not begin fishing until July 1. Predominantly square mesh by end of year. $\mathrm{TAC}=3000 \mathrm{mt} .$
1995		All OT vessels using square mesh. Fixed gear vessels with a history since 1990 of $25 t$ or more for 3 years of cod, haddock, pollock, hake or cusk combined can participate in $5 Z$ fishery. ITQ vessel require at least $2 t$ of cod and $8 t$ of haddock quota to fish Georges. TAC $=2500$ mt . Restrictions on catching of cod and haddock under 43 cm (small fish protocol).
1996	July: Additional Days-at-Sea restrictions, trip limit raised to 1000 lbs.	Fixed gear history requirement dropped. TAC $=4500 \mathrm{mt}$.
1997	May: Additional scheduled Days-at-sea restrictions. September: Trip limit raised to $1000 \mathrm{lbs} /$ day,	Vessels over 65 ft operated on enterprise allocations, otter trawlers under 65 ft on individual quotas, fixed gear vessels $45-65 \mathrm{ft}$

	USA	Canada
	maximum of 10,000 lbs/trip.	on self-administered individual quotas and fixed gear vessels under 45 ft on community quotas administered by local boards. TAC = 3,200 mt.
1998	Sept. 1: Trip limit raised to $3000 \mathrm{lbs} / \mathrm{day}$, maximum of $30,000 \mathrm{lbs} /$ trip.	Fixed gear vessels $45-65 \mathrm{ft}$ operated on individual quotas. TAC $=3,900 \mathrm{mt}$.
1999	May 1: Trip limit 2,000 Ibs/day, max. 20,000 lbs/trip. Square mesh size increased to 6.5" (diamond is 6 "). June 15: Scallop exemption fishery in Closed Area II. Nov. 5: Trip limit 5,000 lbs/day, max. 50,000 lbs/trip.	TAC $=3,900 \mathrm{mt}$.; mandatory cod separator panel when no observer on board.
2000	October: Daily trip limit suspended to April 2001but retained max. trip limit of 50,000 Ibs/trip.	TAC $=5,400 \mathrm{mt}$.
$\begin{aligned} & \hline 2001- \\ & 2002 \\ & \hline \end{aligned}$	Day and trip limit adjustments. Daily trip limit suspended July 5, 2002.	TAC $=6,989$ and 6,740 mt for 2001 and 2002 respectively.
$\begin{aligned} & \hline 2002- \\ & 2003 \end{aligned}$	30,000 - 50,000 lb/trip limit. Trip limit suspended in Oct. 2003.	TAC $=6,933 \mathrm{mt}$ for 2003.
Canada - USA Resource Sharing Agreement on Georges Bank		
2004	May 1, day and trip limits removed. TAC ${ }^{1}=$ $5,100 \mathrm{mt}$. Oct. 1: unit areas 561 and 562 closed to groundfish vessels. Nov. 19: Special Access Program (SAP) for haddock opened. Dec. 31: Haddock SAP closed.	TAC $=9,900 \mathrm{mt}$.
2005	TAC $^{1}=7,590 \mathrm{mt}$. Jan. 14: separator trawl required. Fishery was closed in August when cod by-catch quota reached.	TAC = 15,410 mt; exploratory winter fishery Jan. to Feb. 18, 2005.
2006	$\mathrm{TAC}^{1}=7,480 \mathrm{mt}$; EGB area closed to USA fishery in first half of year when USA cod quota nearly reached.	TAC $=14,520 \mathrm{mt}$; exploratory winter fishery Jan. to Feb. 6, 2006.
2007	$\mathrm{TAC}^{1}=6,270 \mathrm{mt}$. June 20: EGB area closed to USA fishery due to USA cod catch nearing quota. August 9: Minimum haddock size reduced to 18 inches October 20: EGB area opened to USA fishery.	TAC = 12,730 mt; exploratory winter fishery Jan. to Feb. 15, 2007
2008	$\mathrm{TAC}^{1}=8,050 \mathrm{mt}$. Minimum size reverts back to 19 in. in August. Prohibitions on yellowtail flounder fishing Jan to April. Trawl fishery opening delayed until Aug. 1. Ruhle trawl (type of separator trawl) approved for use beginning Sept 15. Restrictions on cod catches.	TAC = 14,950 mt; winter fishery Jan. 1, to Feb. 8, 2008.

${ }^{1}$ For fishing year from May 1 to April 30

Table 3. Canadian landings (mt) of haddock from eastern Georges Bank during 1969-2008 by gear category and tonnage class for principal gears.

Year	Otter Trawl							Longline				Scallop Fishery	Other	Total
	Side	1^{1}	Stern				Total ${ }^{2}$							
			2	3	4	5		1^{1}	2	3	Total			
1969	777		0	1	225	2902	3127		2	21	23	15	0	3941
1970	575		2	0	133	1179	1314		6	72	78	2	1	1970
1971	501		0	0	16	939	955		18	129	151	3	0	1610
1972	148		0	0	2	260	263		23	169	195	1	2	609
1973	633		0	0	60	766	826		23	80	105	0	1	1565
1974	27		0	6	8	332	346		29	59	88	1	0	462
1975	222		0	1	60	963	1024		25	81	107	0	0	1353
1976	217		0	2	59	905	967		48	108	156	0	15	1355
1977	370		92	243	18	2025	2378		43	51	94	1	28	2871
1978	2456		237	812	351	5639	7039		121	47	169	17	287	9968
1979	1622		136	858	627	1564	3185		190	80	271	2	0	5080
1980	1444		354	359	950	6254	7917		129	51	587	4	65	10017
1981	478		448	629	737	2344	4159		331	99	1019	1	1	5658
1982	115		189	318	187	3341	4045		497	187	712	0	0	4872
1983	106		615	431	107	1130	2283		593	195	815	1	3	3208
1984	5		180	269	21	149	620		614	192	835	2	1	1463
1985	72		840	1401	155	348	2745		562	33	626	2	39	3484
1986	51		829	1378	95	432	2734		475	98	594	4	32	3415
1987	48		782	1448	49	1241	3521		854	113	1046	38	50	4703
$1988{ }^{3}$	72		1091	1456	186	398	3183		428	200	695	16	80	4046
1989	0		489	573	376	536	1976		713	175	977	12	95	3060
1990	0		928	890	116	471	2411		623	173	853	7	69	3340
1991	0		1610	1647	81	689	4028		900	271	1309	8	111	5456
1992	0		797	1084	56	645	2583		984	245	1384	4	87	4058
1993	0		535	1179	67	699	2489		794	156	1143	2	93	3727
1994	0		495	911	79	112	1597		498	47	714	9	91	2411
1995	0		523	896	14	214	1647		256	75	390	7	21	2065
1996	1		836	1405	166	270	2689		561	107	947	0	26	3663
1997	0		680	1123	91	96	1991		501	116	722	0	36	2749
1998	0		863	1340	98	71	2422		570	252	921	0	28	3371
1999	0		954	1471	174	145	2761		486	241	887	0	32	3680
2000	0		1313	2269	230	246	4146		619	258	1186	0	70	5402
2001	0		1564	2555	0	757	5112		754	302	1633	0	29	6774
2002	0		1217	2720	0	657	4954		794	151	1521	0	12	6488
2003	0		1186	3246	0	0	4985		806	249	1776	0	14	6775
2004	0		2152	4651	0	67	7744		716	223	2000	0	1	9745
2005	0	1467	2929	7393	326	0	12115	1645	646	78	2368	0	1	14484
2006	0	1605	1805	6076	601	0	10088	1321	491	84	1896	0	1	11984
2007	0	1782	1982	6112	159	0	10034	1463	363	28	1854	0	1	11890
2008	0	2308	2413	7894	0	0	12615	1632	532	0	2164	0	2	14781

[^0]Table 4. Monthly landings (mt) of haddock by Canada from eastern Georges Bank during 1969-2008.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1969	105	74	6	291	588	691	559	580	551	360	102	34	3941
1970	2	105	0	1	574	345	103	456	242	103	26	12	1970
1971	0	9	1	0	400	132	283	278	97	246	141	21	1610
1972	0	119	2	0	2	111	84	116	98	68	7	2	609
1973	4	10	0	0	0	184	198	572	339	232	22	4	1565
1974	19	0	1	0	0	58	63	53	96	61	92	19	462
1975	4	14	0	0	0	166	256	482	100	166	118	45	1353
1976		7	62	68	60	587	152	190	186	26	9	7	1355
1977	102	177	7	0	23	519	1059	835	13	59	56	22	2871
1978	104	932	44	22	21	319	405	85	642	5433	1962	0	9968
1979	123	898	400	175	69	1393	885	396	406	261	53	22	5080
1980	38	134	14	29	223	2956	2300	965	1411	1668	104	176	10017
1981	38	481	568	4	254	1357	1241	726	292	82	378	239	5658
1982	129	309	1	11	46	1060	769	682	585	837	398	44	4872
1983	32	67	29	47	60	1288	387	483	526	195	88	6	3208
1984	3	5	81	88	73	433	219	254	211	71	25	0	1463
1985	1	11	33	99	26	354	392	1103	718	594	61	93	3484
1986	11	28	79	99	40	1339	1059	369	233	139	12	8	3415
1987	24	26	138	70	12	1762	1383	665	405	107	97	14	4703
$1988{ }^{1}$	39	123	67	79	15	1816	1360	315	130	65	13	24	4046
1989	33	94	48	7	20	1398	356	566	141	272	108	18	3060
1990	35	14	50	0	7	1178	668	678	469	199	18	22	3340
1991	144	166	49	26	21	1938	1004	705	566	576	123	137	5456
1992	118	205	97	152	36	1381	619	414	398	401	209	28	4058
1993	468	690	96	78	25	723	505	329	202	198	230	183	3727
1994	3				0	398	693	373	375	220	211	133	2411
1995	5	1	1	1	0	762	327	290	281	109	197	93	2065
1996	0	0	0	0	0	1067	672	706	359	278	191	391	3663
1997	0	0	0	0	0	328	751	772	426	190	116	166	2749
1998	0	0	0	0	0	687	420	580	707	542	164	271	3371
1999	37	0	0	0	0	898	975	562	573	295	269	70	3681
2000	1	0	0	0	0	1368	1175	1026	848	658	175	150	5402
2001	0	0	0	0	0	971	1335	930	1267	1075	647	548	6774
2002	0		0	0	0	572	1703	983	1364	820	593	452	6488
2003	0	0	0		0	840	1767	1290	930	952	676	320	6775
2004	0	0	0	0	0	1547	2268	2109	1753	1275	556	236	9745
2005	1025	1182	0	0	13	1423	3004	3820	2199	1198	357	266	14484
2006	1176	381	0	0	0	1093	2433	2668	2211	1149	558	316	11984
2007	1100	454	0	0	0	1432	3034	2510	1916	991	231	222	11890
2008	1867	1604	0	0	0	1640	2539	2446	2382	1314	645	343	14781

${ }^{1}$ Catches in 1988 of 3t, 1846t and 46t for Jan., Feb., and Mar., respectively for otter trawlers were excluded because of suspected area misreporting

Table 5. Monthly landings (mt) of haddock by the United States from eastern Georges Bank during 19692008. An allocation algorithm was applied to landings from 1994 to 2008 to determine area fished (Wigley et al. 2008a).

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1969	525	559	976	1826	670	810	204	219	249	226	203	157	6624
1970	169	219	242	375	608	374	324	333	179	219	61	50	3154
1971	155	361	436	483	668	503	338	152	147	165	58	68	3533
1972	150	196	91	90	239	261	97	164	84	63	52	64	1551
1973	90	111	77	85	139	365	217	196	37	3	22	55	1397
1974	135	70	47	70	122	160	165	43	27	6	19	91	955
1975	152	123	32	116	388	489	138	95	57	24	52	39	1705
1976	116	147	84	106	323	162	7	6	5	2	3	13	974
1977	75	211	121	154	374	372	434	191	73	52	146	226	2428
1978	336	437	263	584	752	750	467	221	245	426	194	49	4725
1979	274	329	352	548	766	816	588	659	224	202	282	172	5213
1980	632	1063	742	784	711	461	324	254	221	91	110	222	5615
1981	551	1852	634	628	882	1327	1233	873	321	284	242	255	9081
1982	425	755	502	348	719	1805	757	145	201	216	276	138	6286
1983	492	931	272	181	310	1145	231	178	187	110	227	190	4453
1984	540	961	366	281	627	1047	370	303	250	196	92	89	5121
1985	165	190	254	300	352	206	60	47	1	24	41	43	1683
1986	184	396	334	479	496	221	31	6	12	6	6	29	2201
1987	225	52	43	307	233	342	67	30	24	4	23	68	1418
1988	196	152	207	245	366	316	30	19	6	1	45	110	1694
1989	114	56	47	164	161	145	15	8	1	5	25	46	785
1990	148	21	155	274	214	306	23	3	5	5	16	19	1189
1991	105	28	76	133	89	434	1	20	6	0	19	19	931
1992	253	81	51	149	353	669	20	20	17	3	2	12	1629
1993	15	12	16	55	88	209	6	3	3	7	2	8	424
1994	0	1	1	3	1	1	12	1	0	1	1	2	24
1995	1	1	3	4	2	3	1	0	0	0	1	0	15
1996	2	1	2	3	7	3	3	2	1	1	1	1	26
1997	5	4	3	4	11	6	2	1	9	4	2	6	55
1998	5	19	23	29	31	50	21	17	39	22	1	15	271
1999	35	15	30	52	71	62	23	18	28	0	0	22	359
2000	6	13	89	48	42	22	21	15	24	2	17	42	340
2001	42	9	228	146	81	97	51	12	8	38	21	31	762
2002	92	105	91	150	272	175	66	46	17	42	11	24	1090
2003	94	24	86	506	310	319	57	17	4	51	40	169	1677
2004	97	21	174	725	101	349	256	26	57	5	5	31	1847
$2005{ }^{1}$	2	0	45	34	210	158	103	93	0	0	1	2	649
$2006{ }^{1}$	1	0	0	23	192	87	0	7	0	0	1	3	313
$2007{ }^{1}$	1	1	5	71	38	57	0	0	0	24	44	0	243
$2008{ }^{1}$	0	0	7	20	25	86	33	84	65	140	127	550	1136

${ }^{1}$ Restrictions placed on USA fishery in eastern Georges Bank due to by-catch limitations.

Table 6. United States landings (mt) of haddock from eastern Georges Bank during 1969-2008 by gear category and tonnage class. An allocation algorithm was applied to landings from 1994 to 2008 to determine area fished (Wigley et al. 2008a).

Year	Otter Trawl		Other	Total
	3	4		
1969	3013	3610	0	6624
1970	1602	1551	0	3154
1971	1760	1768	0	3533
1972	861	690	0	1551
1973	638	759	0	1397
1974	443	512	0	955
1975	1025	679	0	1705
1976	671	303	0	974
1977	1724	703	0	2428
1978	3140	1582	3	4725
1979	3285	1927	1	5213
1980	2654	2955	4	5615
1981	3601	5433	15	9081
1982	2589	3660	37	6286
1983	1162	3276	15	4453
1984	1855	3261	5	5121
1985	857	823	4	1683
1986	993	1207	1	2201
1987	766	651	1	1418
1988	920	768	6	1694
1989	359	419	6	785
1990	488	697	4	1189
1991	404	527	0	931
1992	650	979	0	1629
1993	153	272	0	424
1994	13	11	0	24
1995	4	11	0	15
1996	12	14	0	26
1997	39	15	1	55
1998	123	147	1	271
1999	126	229	4	359
2000	107	233	0	340
2001	248	513	1	762
2002	462	626	2	1090
2003	798	879	0	1677
2004	676	1169	2	1847
2005	255	359	35	649
2006	159	110	44	313
2007	136	91	17	243
2008	266	761	109	1136

Table 7. United States landings and discards of haddock in 2008 by quarter and market category from eastern Georges Bank and National Marine Fisheries Service sampling intensity for lengths and ages. Note that summaries by market category are not possible for discards as the fish are discarded at sea and are not given a market category.

Number aged

Quarter 1	19	25	N/A	44
Quarter 2	0	24	N/A	24
Quarter 3	76	25	N/A	101
Quarter 4	388	195	N/A	583
Total	483	269	N/A	752

Discards (mt)

Quarter 1	N/A	N/A	N/A	5
Quarter 2	N/A	N/A	N/A	8
Quarter 3	N/A	N/A	N/A	7
Quarter 4	N/A	N/A	N/A	24
Total	N/A	N/A	N/A	44

Table 8. Haddock age and length samples for landings from the Canadian groundfish fishery and for discards from the scallop dredge fishery in 2008 from eastern Georges Bank. (OTB=Otter Trawl Bottom, LL=Long Line, GN=Gill Net, DR=Scallop Dredge)

${ }^{1}$ Scallop fishery samples were combined by quarter.
${ }^{2}$ Gillnet landings added to OTB landings for same month.
${ }^{3}$ Handline landings added to LL landings for same month.
${ }^{4}$ When otoliths were not available for a length grouping, ages were estimated.
${ }^{5}$ Ages for 5 length groupings were estimated and are not included in total.
${ }^{6}$ Ages for 10 length groupings were estimated and are not included in total.
${ }^{7}$ Ages for 8 length groupings were estimated and are not included in total.
${ }^{8}$ Ages for 8 length groupings were estimated and are not included in total.

Table 9. Components of the 2008 catch at age in numbers of haddock from eastern Georges Bank by quarter or half year.

Age Group												
	0	1	2	3	4	5	6	7	8	$9+$	$0+$	
Canadian Landings												
2008 Q1	0	0	344	19585	45521	1861242	39607	13319	383399	49838	2412855	
2008 Q2	0	526	891	30383	9445	1131240	1630	19656	42552	6625	1242949	
2008 Q3	0	553	15375	149680	145387	4574368	44369	44652	207367	13905	5195655	
2008 Q4	0	483	10942	57172	51215	1329253	15348	5195	47803	17908	1535318	
Year total	0	1561	27552	256820	251568	8896104	100954	82822	681120	88276	10386777	
United States Landings ${ }^{1}$												
2008 H1	0	0	0	0	3217	94427	0	1230	3122	3892	105888	
2008.H2	0	0	0	7042	11672	666199	1132	692	21965	2186	710888	
Year total	0	0	0	7042	14889	760626	1132	1922	25087	6078	816776	
Canadian Discards												
2008 Q1	0	0	97	395	343	6205	57	10	470	49	7625	
2008 Q2	0	607	182	627	131	6322	21	120	167	35	8213	
2008 Q3	21	403	409	833	324	5637	21	31	120	8	7806	
2008 Q4	0	436	569	470	233	4277	27	7	90	32	6140	
Year total	21	1446	1256	2325	1030	22440	126	167	847	124	29783	
United States Discards												
2008 Q1	0	5	128	510	43	4111	82	57	198	97	5231	
2008 Q2	0	22	65	801	62	5634	125	46	283	135	7173	
2008 Q3	0	236	423	1075	114	4279	0	35	84	95	6341	
2008 Q4	0	1008	672	3085	425	20717	14	282	428	484	27115	
Year total	0	1272	1289	5471	644	34741	221	420	994	811	45861	

Total

2008 Q1	0	5	568	20490	45907	1871558	39746	13387	384066	49984
2008	2425711									
2008 Q2	0	1155	1138	31811	12855	1237623	1775	21052	46125	10688
1364222										
2008 Q3	21	1192	16207	151588	145825	4584283	44391	44717	207571	14008
5209802										
2008 Q4	0	1927	12183	67769	63545	2020447	16522	6175	70286	20609
Year total	21	4279	30097	271658	2681319713912	102433	85331	708048	95288	11279197

[^1]Table 10. Inter- and intra-reader testing for Georges Bank haddock ageing. SS=S. Sutherland (National Marine Fisheries Service, (NMFS)), LVE=L. Van Eeckhaute (Canadian Department of Fisheries and Oceans, DFO), GB=Georges Bank, CV=coefficient of variation.

Sample Source	Test Type	Date Completed	Age Reader	Sample Size	$\begin{aligned} & \text { CV } \\ & \text { (\%) } \end{aligned}$	Agreement (\%)
$\begin{gathered} 2008 \text { DFO } \\ \text { Commercial } \\ \text { Samples (Q2-4) } \end{gathered}$	Exchange	Spring 2009	$\begin{gathered} \text { SS vs. } \\ \text { LVE } \end{gathered}$	51	1.48	92.2
2009 DFO Spring Survey (NED2009841) Haddock	Exchange	Spring 2009	$\begin{gathered} \text { SS vs. } \\ \text { LVE } \end{gathered}$	54	0.52	98.1
Reference Collection	Accuracy	5/2009	SS	57	0.66	96.5
2008 Commercial Samples (Q4) 2008 Bigelow	Precision	5/2009	SS	110	0.27	97.3
Autumn Survey (200812)	Precision	4/2009	SS	53	0.89	98.1
2008 Albatross Autumn Survey (200807)	Precision	4/2009	SS	38	1.02	92.1
2008 Commercial Samples (Q3)	Precision	4/2009	SS	92	0.15	97.8
2008 Commercial Samples (Q2)	Precision	3/2009	SS	100	0.07	99.0
2008 Bigelow Spring Survey (200804) Haddock	Precision	2/2009	SS	76	0.00	100.0
Reference Collection	Accuracy	1/2009	SS	60	0.28	96.7
2008 Commercial Samples (Q1)	Precision	11/2008	SS	111	0.39	94.6

Table 11. Total annual commercial catch at age numbers (000's) of haddock from eastern Georges Bank during 1969-2008. Estimates of discards are included.

Year	Age Group										
	0	1	2	3	4	5	6	7	8	9+	0+
1969	6	0	18	1451	262	334	2909	831	91	283	6184
1970	0	66	84	7	351	151	130	1153	372	193	2508
1971	43	0	1201	251	31	252	159	161	774	412	3284
1972	118	346	1	390	72	21	94	39	16	451	1547
1973	7	1119	1758	6	364	38	10	39	8	169	3517
1974	9	37	2257	276	0	32	3	0	29	63	2706
1975	553	18	279	1504	216	5	36	2	2	31	2645
1976	1	402	157	173	834	135	0	19	0	18	1739
1977	0	1	8028	66	182	307	164	0	15	15	8778
1978	110	6	291	9956	164	173	306	80	10	9	11105
1979	12	212	17	208	4307	364	201	217	43	14	5597
1980	31	32	17701	343	302	2425	193	130	52	12	21220
1981	6	55	693	6773	400	497	1243	119	33	7	9826
1982	1	2	731	1057	2848	205	379	730	62	65	6080
1983	75	11	149	663	554	1653	208	104	409	35	3860
1984	1	72	100	259	350	270	1131	186	166	318	2854
1985	353	9	2146	386	182	199	128	381	53	117	3954
1986	0	89	39	2586	175	143	124	119	174	42	3492
1987	19	0	2081	131	1536	100	58	83	70	111	4190
1988	1	53	53	2199	124	894	111	39	46	100	3619
1989	8	2	1270	85	757	132	326	31	21	45	2677
1990	18	31	8	1334	128	755	69	166	42	42	2593
1991	35	22	466	91	2076	89	391	72	146	61	3449
1992	151	49	249	323	128	1464	89	319	26	91	2891
1993	4	80	283	351	283	87	646	35	155	75	1998
1994	13	34	304	760	152	56	48	128	29	40	1564
1995	4	8	83	545	419	54	26	3	52	16	1211
1996	6	4	34	495	871	423	61	18	3	73	1988
1997	1	30	103	85	550	489	197	13	8	34	1510
1998	19	19	197	293	262	543	449	114	12	35	1943
1999	2	27	44	752	319	249	347	256	99	25	2119
2000	1	6	320	449	1268	264	213	217	186	67	2991
2001	0	22	65	1733	533	847	263	204	232	204	4105
2002	0	1	333	218	1891	379	671	115	110	289	4008
2003	486	7	10	1831	288	1487	426	479	110	234	5358
2004	4	332	26	75	3646	605	1497	519	421	263	7388
2005	0	14	243	29	224	6891	526	823	128	157	9036
2006	1	20	16	2524	45	289	4557	235	556	156	8399
2007	0	5	50	181	7359	148	159	1403	131	177	9615
2008	0	4	30	272	268	9714	102	85	708	95	11279

Table 12. Average weight at age (kg) of haddock from the commercial groundfish fishery from eastern Georges Bank during 1969-2008. The 1989 to 1991 year-classes (shaded) grew faster than adjacent year-classes. Weights from 1969 to 1994 are for the combined Canadian and USA fishery. After 1994, weights are from the Canadian fishery only.

Year	Age Group							
	1	2	3	4	5	6	7	8
1969	0.600	0.763	1.282	1.531	1.649	1.836	2.298	2.879
1970	0.721	1.067	0.812	1.653	1.886	2.124	2.199	2.841
1971	0.600	0.928	1.059	1.272	2.011	2.255	2.262	2.613
1972	0.759	1.000	1.562	1.750	2.147	2.505	2.411	2.514
1973	0.683	1.002	1.367	1.804	2.202	1.631	2.885	3.295
1974	0.600	0.970	1.418	1.800	1.984	3.760	2.700	3.128
1975	0.600	0.872	1.524	2.062	1.997	2.422	4.114	3.557
1976	0.596	0.956	1.293	1.857	2.417	2.700	2.702	3.000
1977	0.600	0.970	1.442	1.809	2.337	2.809	2.700	3.095
1978	0.619	1.151	1.433	2.055	2.623	2.919	2.972	2.829
1979	0.600	0.987	1.298	1.805	2.206	2.806	3.219	3.277
1980	0.405	0.892	1.034	1.705	2.115	2.593	3.535	3.608
1981	0.600	0.890	1.262	1.592	2.270	2.611	3.505	4.009
1982	0.600	0.965	1.363	1.786	2.327	2.557	2.958	3.531
1983	0.600	1.024	1.341	1.750	2.118	2.509	2.879	3.104
1984	0.600	0.876	1.354	1.838	2.159	2.605	2.856	3.134
1985	0.600	0.950	1.230	1.915	2.227	2.702	2.872	3.180
1986	0.452	0.981	1.352	1.866	2.367	2.712	2.969	3.570
1987	0.600	0.833	1.431	1.984	2.148	2.594	2.953	3.646
1988	0.421	0.974	1.305	1.708	2.042	2.350	3.011	3.305
1989	0.600	0.868	1.450	1.777	2.183	2.522	3.012	3.411
1990	0.639	0.999	1.419	1.787	2.141	2.509	2.807	3.002
1991	0.581	1.197	1.241	1.802	2.087	2.596	2.918	3.012
1992	0.538	1.163	1.622	1.654	2.171	2.491	2.988	3.388
1993	0.659	1.160	1.724	2.181	2.047	2.623	2.386	3.112
1994	0.405	1.135	1.661	2.235	2.639	2.422	2.831	3.223
1995	0.797	1.055	1.511	2.033	2.550	2.755	2.908	3.010
1996	0.576	1.022	1.439	1.795	2.294	2.485	3.322	2.032
1997	0.685	1.215	1.336	1.747	2.120	2.476	3.034	3.365
1998	0.568	1.131	1.573	1.697	1.983	2.312	2.864	3.395
1999	0.678	1.095	1.570	1.910	1.865	2.182	2.535	2.773
2000	0.664	1.103	1.470	1.920	2.242	2.098	2.497	2.816
2001	0.394	1.102	1.471	1.755	2.107	2.367	2.186	2.522
2002	0.405	1.009	1.417	1.762	1.940	2.339	2.657	2.377
2003	0.475	0.758	1.381	1.589	1.851	1.894	2.343	2.839
2004	0.482	0.589	1.102	1.514	1.643	1.880	2.002	2.282
2005	$0.056{ }^{1}$	0.697	0.989	1.433	1.685	1.857	2.041	2.059
2006	0.335	0.514	0.977	0.978	1.603	1.783	1.872	2.019
2007	0.464	0.584	0.990	1.189	1.384	1.655	1.829	1.658
2008	0.458	0.791	0.998	1.228	1.392	1.606	1.557	1.911
Low	0.335^{2}	0.514	0.812	0.978	1.384	1.606	1.557	1.658
High	0.797^{2}	1.215	1.724	2.235	2.639	3.760	4.114	4.009
Median	0.600^{2}	0.978	1.365	1.781	2.119	2.488	2.844	3.054
Average	0.571^{2}	0.956	1.338	1.738	2.079	2.396	2.715	2.958
2006-08 Avg	0.419^{2}	0.630	0.989	1.131	1.460	1.681	1.752	1.862

Table 13. Average lengths at age (cm) of haddock from the eastern Georges Bank Canadian commercial fishery during 1969-2008. The 1989 to 1991 year-classes (shaded) grew faster than adjacent yearclasses.

Year	Age Group							
	1	2	3	4	5	6	7	8
1985		43.2	47.6	56.1	56.8	63.6	66.3	65.8
1986	33.7	43.8	50.1	56.2	63.4	62.8	68.7	72.3
1987		41.4	49.2	56.6	57.5	60.2	62.9	68.2
1988	32.8	43.7	48.4	53.7	58.1	58.1	64.1	64.1
1989		41.8	49.7	53.8	57.8	61.2	62.3	64.1
1990	37.9	43.5	50.2	52.9	58.0	57.8	62.0	59.3
1991	36.2	47.0	47.0	54.2	56.0	61.5	58.9	63.2
1992	35.7	46.4	52.6	52.6	58.1	56.3	64.0	61.2
1993	38.3	46.4	53.4	58.1	56.9	61.6	64.0	65.1
1994	32.5	46.1	52.6	58.1	61.6	59.5	62.8	65.4
1995	40.2	45.0	50.8	56.2	60.8	62.4	63.5	64.2
1996	36.4	44.5	50.0	53.8	58.6	60.0	66.6	56.5
1997	38.6	47.2	48.8	53.4	57.0	60.2	64.4	66.9
1998	36.5	46.1	51.6	52.8	55.7	58.7	63.3	67.2
1999	38.7	45.6	51.5	55.1	54.5	57.4	60.5	62.4
2000	38.5	45.6	50.4	55.2	58.2	56.3	59.9	62.6
2001	32.1	45.5	50.4	53.5	56.9	59.2	57.6	60.3
2002	32.5	44.3	49.7	53.5	55.2	58.9	61.5	59.0
2003	34.2	40.2	49.3	51.6	54.4	54.8	58.9	63.1
2004	34.5	36.9	45.6	50.8	52.3	54.7	55.9	58.3
2005	$16.5{ }^{1}$	38.8	44.0	49.8	52.8	54.5	56.1	56.3
2006	30.4	35.2	43.7	43.9	51.9	53.8	54.7	56.0
2007	34.0	36.7	43.9	46.8	49.2	52.4	54.2	52.1
2008	33.3	40.7	44.2	47.4	49.4	51.9	51.1	54.9
Low	$30.4{ }^{2}$	35.2	43.7	43.9	49.2	51.9	51.1	52.1
High	40.2^{2}	47.2	53.4	58.1	63.4	63.6	68.7	72.3
Median	$35.1{ }^{2}$	44.0	49.7	53.6	56.9	58.8	62.2	62.8
Average	$35.5{ }^{2}$	43.1	48.9	53.2	56.3	58.2	61.0	62.0
Avg. 2006-08	32.6	37.5	43.9	46.0	50.2	52.7	53.3	54.4

[^2]Table 14. Conversion factors used to adjust for changes in door type and survey vessel in the National Marine Fisheries Service surveys during 1968-2009.

Year	Door	Spring		Fall	
		Vessel	Conversion	Vessel	Conversion
1968	BMV	Albatross IV	1.49	Albatross IV	1.49
1969	BMV	Albatross IV	1.49	Albatross IV	1.49
1970	BMV	Albatross IV	1.49	Albatross IV	1.49
1971	BMV	Albatross IV	1.49	Albatross IV	1.49
1972	BMV	Albatross IV	1.49	Albatross IV	1.49
1973	BMV	Albatross IV	1.49	Albatross IV	1.49
1974	BMV	Albatross IV	1.49	Albatross IV	1.49
1975	BMV	Albatross IV	1.49	Albatross IV	1.49
1976	BMV	Albatross IV	1.49	Albatross IV	1.49
1977	BMV	Albatross IV	1.49	Delaware II	1.2218
1978	BMV	Albatross IV	1.49	Delaware II	1.2218
1979	BMV	Albatross IV	1.49	Delaware II	1.2218
1980	BMV	Albatross IV	1.49	Delaware II	1.2218
1981	BMV	Delaware II	1.2218	Delaware II	1.2218
1982	BMV	Delaware II	1.2218	Albatross IV	1.49
1983	BMV	Albatross IV	1.49	Albatross IV	1.49
1984	BMV	Albatross IV	1.49	Albatross IV	1.49
1985	Polyvalent	Albatross IV	1	Albatross IV	1
1986	Polyvalent	Albatross IV	1	Albatross IV	1
1987	Polyvalent	Albatross IV	1	Albatross IV	1
1988	Polyvalent	Albatross IV	1	Albatross IV	1
1989	Polyvalent	Delaware II	0.82	Delaware II	0.82
1990	Polyvalent	Delaware II	0.82	Delaware II	0.82
1991	Polyvalent	Delaware II	0.82	Delaware II	0.82
1992	Polyvalent	Albatross IV	1	Albatross IV	1
1993	Polyvalent	Albatross IV	1	Delaware II	0.82
1994	Polyvalent	Delaware II	0.82	Albatross IV	1
1995	Polyvalent	Albatross IV	1	Albatross IV	1
1996	Polyvalent	Albatross IV	1	Albatross IV	1
1997	Polyvalent	Albatross IV	1	Albatross IV	1
1998	Polyvalent	Albatross IV	1	Albatross IV	1
1999	Polyvalent	Albatross IV	1	Albatross IV	1
2000	Polyvalent	Albatross IV	1	Albatross IV	1
2001	Polyvalent	Albatross IV	1	Albatross IV	1
2002	Polyvalent	Albatross IV	1	Albatross IV	1
2003	Polyvalent	Delaware II	0.82	Delaware II	0.82
2004	Polyvalent	Albatross IV	1	Albatross IV	1
2005	Polyvalent	Albatross IV	1	Albatross IV	1
2006	Polyvalent	Albatross IV	1	Albatross IV	1
2007	Polyvalent	Albatross IV	1	Albatross IV	1
2008	Polyvalent	Albatross IV	1	Albatross IV	1
2009	New net	Bigelow	Not available		

Table 15. Total swept area estimates of abundance at age (numbers in 000's) of eastern Georges Bank haddock from the Canadian Department of Fisheries and Oceans (DFO) surveys during 1986-2009.

	Age Group								6	7
Year	1	2	3	4	5	6	8	$9+$	Total	
1986	5057	306	8176	997	189	348	305	425	401	16205
1987	46	4286	929	3450	653	81	387	135	1132	11099
1988	971	49	12714	257	4345	274	244	130	686	19670
1989	48	6664	991	2910	245	526	40	34	265	11724
1990	726	108	12300	168	4466	299	1370	144	389	19968
1991	383	2163	134	10819	114	1909	117	505	225	16368
1992	1914	3879	1423	221	4810	18	1277	52	656	14249
1993	3448	1759	545	431	34	1186	19	281	147	7849
1994	4197	15163	5332	549	314	20	915	18	356	26864
1995	1231	3224	6236	3034	720	398	0	729	849	16422
1996	1455	2290	4784	5305	3113	303	274	38	684	18247
1997	1033	1550	1222	2742	2559	1397	150	65	372	11090
1998	2379	10626	5348	3190	5312	5028	2248	348	601	35080
1999	24593	4787	10067	3104	1963	1880	1764	448	174	48780
2000	3177	15865	7679	12108	2900	2074	2726	1591	813	48932
2001	23026	3519	14633	4255	5608	1808	1426	1963	2299	58536
2002	732	28174	5977	12660	2981	2646	648	529	2423	56769
2003	1682	1503	82161	5533	15105	3675	2355	1106	1986	115107
2004	91843	539	2682	54882	5001	9695	1654	954	634	167883
2005	1669	20958	531	1557	25559	3403	4815	1087	548	60125
2006	9130	5817	178604	2521	2251	15695	764	1633	261	216675
2007	3051	9541	3289	67311	984	154	3584	251	652	88816
2008	3832	1219	4647	5025	103874	1006	191	8553	724	129071
2009	2001	3977	2668	5989	652	43838	637	125	1568	61456

Table 16. Total swept area estimated abundance at age (numbers in 000's) of eastern Georges Bank haddock from the National Marine Fisheries Service spring surveys during 1968-2009. From 1973-81, a 41 Yankee trawl was used while a 36 Yankee trawl was used in other years. Conversion factors to adjust for changes in door type and survey vessel were applied.

Year	Age Group									
	1	2	3	4	5	6	7	8	9+	Total
1968	0	3254	68	679	4853	2045	240	123	234	11496
1969	17	35	614	235	523	3232	1220	358	489	6724
1970	478	190	0	560	998	441	3165	2491	769	9092
1971	0	655	261	0	144	102	58	1159	271	2650
1972	2594	0	771	132	25	47	211	27	1214	5020
1973	2455	5639	0	1032	154	0	276	0	1208	10763
1974	1323	20596	4084	0	354	0	43	72	322	26795
1975	528	567	6016	1063	0	218	127	45	208	8773
1976	8228	402	424	1127	532	0	0	0	22	10735
1977	126	26003	262	912	732	568	0	22	102	28727
1978	0	743	20859	641	880	1163	89	23	116	24516
1979	10496	441	1313	9764	475	72	445	42	9	23056
1980	4355	66450	1108	1086	5761	613	371	693	360	80797
1981	3281	2823	27085	2906	751	2455	347	56	21	39725
1982	584	3703	1658	7802	767	455	697	0	0	15666
1983	238	770	686	359	2591	30	0	798	58	5529
1984	1366	1414	1046	910	847	1189	133	73	490	7469
1985	40	8911	1396	674	1496	588	1995	127	483	15709
1986	3334	280	3597	246	210	333	235	560	159	8953
1987	122	5480	144	1394	157	231	116	370	0	8013
1988	305	61	1868	235	611	203	218	178	0	3678
1989	84	6665	619	1343	267	791	58	92	47	9966
1990	1654	70	10338	598	1042	110	182	0	0	13995
1991	740	2071	432	3381	192	203	66	87	25	7198
1992	529	287	205	158	602	32	46	46	0	1905
1993	1870	1116	197	232	195	717	77	35	43	4480
1994	1025	4272	1487	269	184	118	278	28	84	7745
1995	921	2312	4184	1727	265	152	51	272	214	10099
1996	912	1365	3789	3190	1905	237	36	0	496	11931
1997	1635	1226	380	595	470	343	24	44	20	4736
1998	549	6046	2005	1281	1184	303	58	15	122	11562
1999	6286	1914	3655	661	1128	1062	468	476	46	15696
2000	2675	2131	3399	1624	636	564	438	305	165	11938
2001	10503	1186	3304	1232	374	294	113	20	20	17047
2002	231	40432	10938	4044	1492	473	287	229	236	58362
2003	125	1105	16915	2245	3773	476	200	82	286	25206
2004	195013	4724	2644	45872	3544	5261	960	1245	842	260104
2005	540	32911	257	614	5818	671	1196	240	67	42313
2006	2961	1247	48882	213	949	6650	325	574	187	61988
2007	1468	11383	2055	95882	180	441	2168	222	312	114110
2008	3402	1671	4332	240	38569	836	371	1739	480	51639
2009			New ve	el and n	, conve	n fact	not ava	ble.		

Table 17. Total swept area estimated abundance at age (numbers in 000's) of eastern Georges Bank haddock from National Marine Fisheries Service fall surveys during 1963-2008. Conversion factors to adjust for changes in door type and survey vessel were applied.

Year	Age Group									
	0	1	2	3	4	5	6	7	8+	Total
1963	105993	40995	10314	3378	5040	4136	1477	451	276	172061
1964	1178	123976	46705	4358	807	1865	477	211	167	179742
1965	259	1503	51338	8538	479	302	142	148	208	62918
1966	9325	751	1742	20323	3631	671	138	133	84	36798
1967	0	3998	73	327	1844	675	141	88	88	7233
1968	55	113	800	28	37	2223	547	177	313	4293
1969	356	0	0	509	62	30	739	453	108	2257
1970	0	6400	336	16	415	337	500	902	578	9483
1971	2626	0	788	97	0	265	27	73	594	4471
1972	4747	2396	0	232	0	0	53	0	275	7702
1973	1223	16797	1598	0	168	0	0	8	16	19809
1974	151	234	961	169	0	6	0	0	70	1589
1975	30365	664	192	1042	239	0	0	0	28	32530
1976	738	121717	431	25	484	71	0	17	37	123521
1977	47	238	26323	445	125	211	84	4	4	27480
1978	14642	547	530	7706	56	42	94	0	0	23617
1979	1598	21605	14	335	1489	45	12	0	0	25098
1980	3556	2788	5829	0	101	1081	108	25	4	13492
1981	596	4617	2585	2748	89	136	318	0	15	11103
1982	62	0	673	465	2508	153	97	528	42	4527
1983	3609	444	236	501	289	402	17	12	86	5598
1984	45	3775	856	233	194	45	262	0	41	5451
1985	12148	381	1646	199	70	68	46	30	21	14611
1986	30	7471	109	961	52	50	72	24	23	8793
1987	508	0	843	28	152	38	22	0	0	1592
1988	122	3983	184	2348	155	400	142	140	38	7513
1989	167	83	2645	112	509	68	73	0	0	3656
1990	1217	1041	36	1456	65	196	24	5	0	4040
1991	705	331	267	52	289	25	10	0	0	1679
1992	3484	1052	172	110	0	95	0	18	18	4948
1993	687	6656	3601	585	0	87	96	30	0	11742
1994	625	782	927	419	96	32	0	24	0	2905
1995	892	1436	5993	3683	550	30	0	0	53	12637
1996	1742	453	570	2302	963	167	0	0	0	6196
1997	217	5738	3368	592	690	385	0	0	13	11004
1998	2566	2966	4214	1085	705	526	722	0	0	12784
1999	3268	1236	5364	5060	837	2825	148	1150	991	20879
2000	1368	5284	6226	3712	622	229	0	146	97	17684
2001	659	16626	1382	6939	3000	1586	306	127	58	30684
2002	172	1864	44602	6040	5120	1660	863	457	354	61131
2003	196182	60	285	3415	655	739	20	99	158	201613
2004	2864	116289	322	775	17200	1034	2410	416	528	141837
2005	4981	3114	95159	340	532	3631	347	242	155	108502
2006	930	8752	1040	65817	1083	82	796	0	16	78517
2007	1264	1922	11764	965	52456	955	562	244	0	70132
2008	1902	1865	1162	2564	477	21289	0	74	484	29818

Table 18. Average weight at age (kg) of eastern Georges Bank haddock from the Canadian Department of Fisheries and Oceans surveys during 1986-2009. These weights are used to represent beginning of year population weights.

Year	Age Group								
	1	2	3	4	5	6	7	8	9+
1986	0.135	0.451	0.974	1.445	3.044	2.848	3.598	3.376	3.918
1987	0.150	0.500	0.716	1.672	2.012	2.550	3.148	3.151	3.629
1988	0.097	0.465	0.931	1.795	1.816	1.918	2.724	3.264	3.871
1989	0.062	0.474	0.650	1.392	1.995	2.527	2.158	2.859	3.141
1990	0.149	0.525	0.924	1.181	1.862	2.073	2.507	2.815	3.472
1991	0.120	0.685	0.800	1.512	1.695	2.434	2.105	3.122	3.432
1992	0.122	0.602	1.118	1.061	2.078	2.165	2.709	2.284	3.440
1993	0.122	0.481	1.227	1.803	1.274	2.332	2.343	2.739	3.280
1994	0.107	0.469	1.047	1.621	1.927	2.154	3.154	2.688	3.084
1995	0.086	0.493	0.963	1.556	2.222	2.445	$2.4{ }^{1}$	2.991	3.184
1996	0.139	0.495	0.919	1.320	1.932	2.555	2.902	2.611	3.588
1997	0.132	0.506	0.782	1.205	1.664	2.176	2.454	2.577	3.158
1998	0.107	0.535	1.035	1.161	1.570	1.954	2.609	3.559	3.462
1999	0.130	0.474	0.911	1.290	1.259	1.869	2.131	2.722	2.992
2000	0.116	0.543	0.949	1.478	1.871	1.789	2.298	2.508	2.901
2001	0.093	0.524	1.005	1.371	1.798	2.165	2.250	2.593	2.928
2002	0.096	0.332	0.778	1.138	1.494	1.965	2.177	2.206	2.708
2003	0.080	0.369	0.846	1.063	1.477	1.645	2.208	2.229	2.487
2004	0.064	0.310	0.781	1.151	1.306	1.558	1.622	1.956	2.216
2005	0.028	0.218	0.493	0.696	1.226	1.321	1.531	1.600	2.444
2006	0.059	0.171	0.389	0.657	0.870	1.366	1.591	1.742	2.355
2007	0.077	0.246	0.405	0.709	0.992	1.745	1.559	1.671	1.862
2008	0.107	0.329	0.573	0.795	0.927	1.254	1.729	1.476	1.897
2009	0.114	0.387	0.775	0.999	0.987	1.258	1.482	2.680	2.228
Low	0.028	0.171	0.389	0.657	0.870	1.254	1.482	1.476	1.862
High	0.150	0.685	1.227	1.803	3.044	2.848	3.598	3.559	3.918
Median	0.107	0.474	0.878	1.247	1.679	2.019	2.250	2.646	3.113
Average	0.104	0.441	0.833	1.253	1.637	2.003	2.304	2.559	2.986
Avg. 2007-09	0.099	0.320	0.584	0.834	0.969	1.419	1.590	1.942	1.995
Avg. 1991-2000	0.118	0.528	0.975	1.401	1.749	2.187	2.523	2.780	3.252

[^3]Table 19. Average lengths at age (cm) of eastern Georges Bank haddock from the Canadian Department of Fisheries and Oceans surveys during 1986-2009.

Year				2	3	Age Group							5	6	7	8	$9+$
	22.9	36.2	45.4	51.0	63.7	61.9	67.8	66.0	70.7								
1987	24.2	36.3	39.7	53.4	57.1	61.1	65.1	65.8	69.6								
1988	22.3	36.4	45.1	55.7	55.9	58.0	62.4	65.8	71.5								
1989	19.5	35.9	39.1	50.4	56.8	61.3	58.0	64.6	66.3								
1990	24.7	35.8	44.4	48.0	55.9	58.7	61.6	63.1	67.5								
1991	23.1	40.7	42.7	51.7	52.9	60.2	58.3	65.1	67.8								
1992	23.2	39.2	47.7	46.8	57.7	62.5	63.9	60.3	68.1								
1993	23.6	36.6	49.7	55.5	50.0	60.4	59.3	63.7	67.3								
1994	22.3	35.8	45.8	53.8	57.6	58.5	65.9	66.5	65.4								
1995	20.2	36.3	45.1	52.7	59.0	62.5		65.0	66.0								
1996	24.2	36.2	44.4	50.1	56.9	62.7	66.2	61.8	68.4								
1997	23.6	37.1	42.1	48.9	54.2	59.5	62.4	63.5	66.8								
1998	21.8	37.6	46.4	47.3	52.9	57.2	62.5	69.3	68.7								
1999	23.7	35.9	44.8	49.8	48.9	56.1	58.9	63.6	66.6								
2000	22.7	37.6	44.3	52.1	56.4	54.7	59.6	61.7	64.7								
2001	21.7	37.5	46.1	51.1	56.2	60.0	59.0	62.5	65.5								
2002	21.5	31.8	42.1	47.5	52.0	58.1	60.3	59.2	64.4								
2003	20.2	34.0	43.3	46.8	52.0	53.8	61.2	61.3	63.3								
2004	19.1	31.8	42.0	47.9	50.6	53.3	55.3	59.1	60.2								
2005	15.1	29.1	37.2	41.1	49.7	51.6	53.8	54.3	62.7								
2006	18.7	27.0	34.0	40.2	42.6	51.8	52.8	55.7	62.2								
2007	20.6	29.6	34.2	41.0	46.7	55.0	53.5	54.1	55.4								
2008	23.1	33.1	39.4	43.0	45.7	50.5	56.3	52.9	57.9								
2009	23.2	34.7	42.6	45.8	44.9	49.3	51.9	61.7	59.4								
Low	15.1	27.0	34.0	40.2	42.6	49.3	51.9	52.9	55.4								
High	24.7	40.7	49.7	55.7	63.7	62.7	67.8	69.3	71.5								
Median	22.5	36.0	43.8	49.4	53.6	58.3	59.6	62.8	66.2								
Average	21.9	35.1	42.8	48.8	53.2	57.4	59.8	61.9	65.3								

Table 20. Statistical properties of estimates of population abundance (numbers in 000's) at beginning of year 2009 and survey calibration constants (unitless, survey:population) for eastern Georges Bank haddock obtained from a bootstrap with 1000 replications.

Age	Estimate	Standard Error	Relative Error	Bias	$\begin{aligned} & \text { Relative } \\ & \text { Bias } \end{aligned}$
Population Abundance (000's)					
1	10933	8393	0.768	2089	0.191
2	10488	4420	0.421	793	0.076
3	4664	1528	0.328	266	0.057
4	13721	3789	0.276	503	0.037
5	2413	653	0.271	88	0.036
6	92002	16590	0.180	921	0.010
7	571	153	0.268	16	0.028
8	324	114	0.352	16	0.049
Survey Calibration Constants					
Canadian Department of Fisheries and Oceans Survey					
1	0.235	0.044	0.186	0.002	0.010
2	0.429	0.077	0.179	0.007	0.016
3	0.835	0.149	0.179	0.001	0.001
4	0.881	0.151	0.171	0.008	0.009
5	0.959	0.167	0.174	0.011	0.011
6	0.813	0.153	0.188	0.010	0.012
7	0.930	0.173	0.186	0.022	0.024
8	0.860	0.154	0.179	0.014	0.016

National Marine Fisheries Service (NMFS) Spring Survey - Yankee 36 -1969-72/1982-2006

1	0.133	0.021	0.161	0.002	0.017
2	0.340	0.055	0.162	0.004	0.012
3	0.439	0.068	0.156	0.003	0.006
4	0.415	0.064	0.155	0.006	0.014
5	0.482	0.077	0.159	0.007	0.015
6	0.425	0.067	0.157	0.003	0.008
7	0.398	0.061	0.153	0.004	0.011
8	0.432	0.070	0.162	0.008	0.019
NMFS Spring	Survey - Yankee $41-1973-81$				
1	0.228	0.070	0.307	0.007	0.030
2	0.535	0.156	0.291	0.018	0.034
3	0.653	0.216	0.330	0.037	0.056
4	0.807	0.268	0.332	0.044	0.055
5	0.897	0.283	0.315	0.053	0.059
6	0.813	0.308	0.379	0.051	0.063
7	1.491	0.513	0.344	0.080	0.053
8	0.725	0.243	0.335	0.036	0.050
NMFS Fall $S u r v e y$					
0	0.130	0.019	0.144	0.002	0.015
1	0.305	0.046	0.150	0.005	0.016
2	0.251	0.035	0.141	0.002	0.007
3	0.243	0.034	0.140	0.004	0.015
4	0.203	0.030	0.148	0.001	0.006
5	0.170	0.024	0.139	0.003	0.016

Table 21. Beginning of year population abundance (numbers in 000's) for eastern Georges Bank haddock during 1969-2009 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2009.

Year	Age Group											
	1	2	3	4	5	6	7	8	9+	1+	2+	$3+$
1969	804	193	3639	872	911	7650	2496	250	776	17590	16787	16594
1970	3592	658	141	1681	479	447	3659	1299	506	12461	8868	8211
1971	234	2881	463	109	1060	56	249	1961	971	8185	950	69
1972	5301	192	1284	155	62	642	69	61	1339	9106	3805	3613
1973	11635	029	156	702	63	32	441	21	728	17806	6172	2143
1974	3079	517	1727	122	50	18	17	326	454	1451	11432	915
1975	3443	488	946	165	00	76	12	14	556	1290	45	70
1976	54027	2803	785	2700	760	78	111	8	437	62709	8682	88
1977	6015	43871	2153	1305	1462	501	64	74	348	55793	49778	907
78	4039	4923	28693	1703	905	921	263	52	319	41819	37780	32856
1979	52244	3302	3768	14569	1247	586	480	143	286	76624	24381	21079
1980	6214	42582	2688	2897	8062	694	299	199	300	63935	57721	15139
1981	4591	5058	19032	1891	2100	4425	395	129	351	37972	33382	28323
1982	2054	3709	3517	9514	1189	1273	2507	216	356	24336	22282	18572
1983	2474	680	180	930	23	789	701	1397	354	16940	14466	12786
1984	15921	16	1241	1353	1083	2802	459	481	1036	26392	0471	55
1985	1576	12970	1561	783	793	44	1282	09	808	20626	49	79
1986	13658	12	8687	931	478	471	412	07	79	27306	13648	12365
1987	15	11101	1015	491	604	26	274	231	941	20770	192	8119
1988	15735	1268	7217	712	2545	405	163	150	797	2899	13257	11989
1989	860	12835	991	3935	472	1283	231	99	643	21350	20490	7654
1990	2338	702	9364	735	2541	268	757	162	548	17415	15076	14374
1991	2001	1886	568	6465	486	1403	157	471	505	13942	11941	10055
1992	8043	1618	1126	383	3432	318	797	65	613	16394	8351	6733
1993	12194	540	101	631	199	1501	180	367	449	23161	10968	4427
199	11684	911	099	586	265	85	652	116	462	28860	17176	7265
19	5882	36	840	490	44	66	27	418	411	28114	22232	12697
1996	5789	4808	7732	5927	2480	233	113	19	18	277	1930	17122
1997	17281	4736	3906	5884	69	650	136	76	53	8189	20908	16173
1998	8399	14121	3785	3121	21	890	173	99	39	38304	29906	15785
1999	28340	6859	11383	2834	2319	049	1962	857	363	57967	29626	22767
2000	9335	23179	5576	8641	2033	1674	2184	1376	887	54885	45550	22372
2001	82112	7637	18688	4160	5933	1426	1179	1593	1625	124353	42241	34604
2002	3330	67207	6194	13738	2926	4094	932	782	2241	101443	98113	30906
2003	2689	2725	54724	4875	9544	2054	2748	659	2115	82132	79443	76718
2004	291009	2195	2222	43151	3731	6475	1298	1819	1961	353862	62852	60657
2005	6047	237958	1774	1751	32041	2510	3955	599	2479	289115	283068	45109
2006	24621	4939	194605	1426	1232	20035	1582	2498	2263	253201	228580	223641
2007	6607	20139	4029	157049	1128	749	12306	1084	3258	206349	199742	179602
2008	11846	5405	16443	3136	121938	790	470	8811	3276	172116	160270	154865
2009	884	9695	4398	13217	2326	91080	554	308	9172	139595	130751	121056

Table 22. Fishing mortality rate for eastern Georges Bank haddock during 1969-2008 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2008. The aggregated rates are weighted by population numbers. The rates for ages 4+ and 5+ are also shown as exploitation rate (\%).

Year	Age Group												
	1	2	3	4	5	6	7	8	9+		\%)	5+	+(\%)
1969	0.000	0.111	0.573	0.399	0.512	0.538	0.453	0.508	0.508	0.508	36.4	0.516	36.8
1970	0.021	0.152	0.057	0.261	0.425	0.383	0.424	0.377	0.538	0.387	29.3	0.421	31.3
1971	0.000	0.608	0.892	0.369	0.302	1.114	1.203	0.565	0.623	0.577	40.1	0.582	40.4
1972	0.075	0.005	0.404	0.705	0.468	0.175	0.973	0.342	0.460	0.410	30.7	0.389	29.4
1973	0.1	0.6	0.045	0.	1.057	0.410	0	0.5	0	0	. 2	3	7
1974	0.013	0.344	0.193	0.000	0.154	0.181	0.015	0.103	0.	0.127	10.8	0.141	12.0
1975	0.006	0.132	0.405	0.227	0.052	0.255	0.219	0.219	0.06	0.176	14.6	0.106	9.1
1976	0.008	0.064	0.113	0.414	0.217	0.000	0.208	0.000	0.046	0.324	25.2	0.150	12.6
1977	0.000	0.225	0.035	0.166	0.262	0.445	0.000	0.247	0.048	0.228	18.6	0.262	21.0
1978	0.002	0.067	0.478	0.112	0.235	0.453	0.406	0.244	0.033	0.228	18.6	0.309	24.2
19	0.00	0.006	0.063	0.392	0.386	0.471	0.680	0.402	0.	7	. 9	22	31.4
1980	0.006	0.605	0.151	0.122	0.400	0.364	0.641	0.336	0.04	0.329	25.6	0.392	29.6
19	0.013	0.163	0.493	0.264	0.301	0.368	0.403	0.331	0.02	0.320	24.9	0.334	5.9
1982	0.001	0.244	0.400	0.398	0.210	0.396	0.385	0.380	0.225	0.376	28.6	0.339	26.2
1983	0.005	0.103	0.364	0.378	0.425	0.341	0.178	0.387	0.114	0.377	28.7	0.377	28.7
19	0.005	0.056	0.261	0.334	0.320	0.582	0.586	0.474	0.410	0.465	33.9	0.495	35.7
1985	0.006	0.201	0.317	0.294	0.321	0.246	0.395	0.328	0.173	0.300	23.6	0.302	23.7
1986	0.007	0.034	0.395	0.232	0.397	0.341	0.379	0.315	0.070	0.270	21.5	0.283	22.4
1987	0.000	0.231	0.154	0.433	0.201	0.276	0.404	0.401	0.139	0.366	28.0	0.228	18.6
1988	0.004	0.047	0.406	0.212	0.485	0.359	0.302	0.413	0.149	0.369	28.1	0.397	29.9
1989	0.003	0.115	0.099	0.238	0.367	0.327	0.159	0.264	0.081	0.246	19.9	0.259	20.8
1990	0.015	0.012	0.170	0.213	0.394	0.334	0.275	0.338	0.089	0.311	24.4	0.328	25.5
1991	0.012	0.316	0.195	0.433	0.226	0.365	0.689	0.415	0.142	0.400	30.1	0.330	25.6
1992	0.007	0.186	0.378	0.457	0.627	0.368	0.576	0.589	0.179	0.544	38.4	0.550	38.7
1993	0.007	0.049	0.429	0.670	0.652	0.634	0.237	0.616	0.203	0.560	39.2	0.535	37.9
1994	0.003	0.034	0.179	0.335	0.265	0.954	0.243	0.318	0.101	0.272	21.7	0.249	20.0
1995	0.002	0.010	0.080	0.142	0.189	0.185	0.118	0.147	0.045	0.139	11.8	0.131	11.2
1996	0.001	0.008	0.073	0.176	0.208	0.339	0.194	0.190	0.139	0.186	15.5	0.204	16.8
1997	0.002	0.024	0.024	0.109	0.142	0.141	0.113	0.125	0.088	0.123	10.5	0.137	11.6
1998	0.003	0.016	0.089	0.097	0.149	0.187	0.113	0.141	0.102	0.139	11.8	0.154	13.0
1999	0.001	0.007	0.076	0.132	0.126	0.134	0.155	0.135	0.081	0.134	11.4	0.134	11.4
2000	0.001	0.015	0.093	0.176	0.154	0.150	0.116	0.161	0.087	0.157	13.2	0.137	11.6
1	0.000	0.009	0.108	0.152	0.171	0.226	0.211	0.174	0.149	0.172	14.3	0.179	14.9
2002	0.000	0.005	0.039	0.164	0.154	0.198	0.145	0.168	0.153	0.167	14.0	0.171	14.3
2003	0.003	0.004	0.037	0.067	0.187	0.258	0.212	0.202	0.130	0.165	13.8	0.193	16.0
2004	0.001	0.013	0.037	0.097	0.195	0.292	0.572	0.292	0.159	0.144	12.2	0.275	21.9
2005	0.002	0.001	0.017	0.148	0.267	0.260	0.257	0.266	0.072	0.250	20.1	0.254	20.4
2006	0.001	0.003	0.014	0.034	0.287	0.283	0.176	0.276	0.078	0.249	20.0	0.260	20.8
2007	0.001	0.003	0.048	0.052	0.149	0.250	0.131	0.140	0.061	0.059	5.2	0.125	10.7
2008	0.000	0.006	0.017	0.093	0.089	0.144	0.199	0.090	0.032	0.089	7.7	0.088	7.7

Table 23. Beginning of year biomass for eastern Georges Bank haddock during 1969-2009 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2009.

Year	Age Group											
	1	2	3	4	5	G	7	8	9+	1+	2+	3+
1969	92	99	3402	1311	1815	17936	6780	733	2674	34843	34751	34652
970	413	339	132	2527	954	1048	9937	3804	1742	20896	20483	20144
1971	27	1482	433	164	2112	600	677	5743	3345	14584	14557	13075
1972	609	99	1201	234	123	1505	187	180	4613	8751	8141	8042
73	1337	2073	146	1056	25	74	1198	62	2507	8579	242	169
4	354	4382	1615	184	99	42	47	956	1564	9642	288	906
75	396	80	4624	1753	200	412	33	41	1916	665	0258	79
76	6211	1442	1669	4060	515	83	303	24	150	6911	0700	258
77	91	22573	2013	663	13	174	73	17	1199	2917	3225	653
78	46	2533	26826	5	1803	160	714	153	109	8314	7849	35316
79	6006	1699	352	21910	24	373	1303	420	98	3	33698	31999
8	714	21909	2513	4357	16064	1626	813	582	1034	49614	48899	90
81	28	2603	17794	2844	4184	10376	1072	378	1209	40987	40460	37857
982	236	1909	3288	14308	2369	2984	6810	632	1228	33764	33528	31619
1983	284	864	2225	2903	10429	1850	1905	4093	1219	25773	25489	24624
1984	1830	1037	1160	2035	2158	570	1247	1408	3568	21013	19183	18146
1985	181	6673	1459	1177	1580	1509	3482	613	2782	19458	19277	12603
1986	1839	579	8463	345	1453	1342	1483	2388	2662	21554	19715	9136
1987		5546	727	8013	1216	670		728	341	21410	177	31
1988	1530	589	6715	279	4623	6	445	489	3085	19531	001	12
1989	53	60	644	5480	942	41	499	282	2021	19248	19195	9
19	48	368	86	868	4732	555	1898	455	19	19781	194	64
1991	239	1292	45	9772	824	3415	330	1470	1733	19530	19290	17998
1992	983	975	1258	406	7132	688	2160	147	2109	15859	14875	13900
1993	1487	3147	1350	1139	253	3501	422	1006	1472	13776	12289	9142
1994	1246	4650	5338	951	510	183	2055	312	1426	16670	15424	10774
1995	507	4705	7551	5432	763	406	64	1251	1310	21990	21483	16778
1996	802	2379	7105	7825	790	595	328	51	2216	26092	25290	22911
1997	2284	2398	3053	091	771	3590	333	97	1431	27148	24864	2465
1998	901	7560	3918	3625	783	5648	3060	353	1367	321	2315	24755
	74	3249	10368	3655	2919		4182	退		71	348	240
2000	080	1259	529	1277	80				2573	958	8502	35908
,	7666	3999	1878	5703	1066	3089	2653	131	475	14	53784	49785
2002	318	22284	4819	15629	4371	8044	028	724	6068	65286	64968	42684
2003	216	1007	46300	5181	14097	3378	6068	1470	5261	82977	82761	81755
2004	18595	681	1736	49676	4873	10090	2106	3557	4345	95659	77065	76384
2005	168	51816	874	1220	39285	3316	6055	958	6061	109753	109584	57768
2006	1444	845	75674	937	1072	27369	2516	4352	5330	119539	118095	117250
2007	506	4944	1631	111355	1118	1307	19191	1810	6064	147927	147421	142477
2008	1268	1778	9426	2492	113073	991	812	13001	6214	149055	147788	146009
2009	1009	3752	3409	13202	2295	114590	822	825	20434	160337	159329	155577

Table 24. Partial recruitment of haddock normalized to ages 4 to 8 from the eastern Georges Bank Canadian commercial fishery during 1991-2008.

		Age Group							
Year	1	2	3	4	5	6	7	8	$9+$
1991	0.029	0.762	0.469	1.044	0.544	0.879	1.661	1.000	0.343
1992	0.012	0.315	0.642	0.775	1.065	0.625	0.978	1.000	0.304
1993	0.012	0.079	0.697	1.087	1.058	1.029	0.385	1.000	0.329
1994	0.010	0.108	0.562	1.051	0.831	2.995	0.763	1.000	0.316
1995	0.010	0.066	0.540	0.961	1.284	1.255	0.799	1.000	0.306
1996	0.004	0.041	0.386	0.929	1.095	1.788	1.021	1.000	0.735
1997	0.015	0.194	0.194	0.870	1.138	1.130	0.910	1.000	0.702
1998	0.018	0.110	0.634	0.690	1.056	1.329	0.806	1.000	0.724
1999	0.008	0.052	0.557	0.976	0.927	0.986	1.142	1.000	0.594
2000	0.004	0.095	0.578	1.094	0.958	0.935	0.718	1.000	0.543
2001	0.002	0.054	0.617	0.870	0.979	1.294	1.209	1.000	0.852
2002	0.003	0.032	0.234	0.974	0.914	1.179	0.864	1.000	0.909
2003	0.016	0.024	0.221	0.396	1.108	1.528	1.254	1.196	0.768
2004	0.009	0.087	0.261	0.679	1.365	2.038	3.998	2.040	1.111
2005	0.009	0.004	0.067	0.569	1.025	0.996	0.987	1.019	0.276
2006	0.003	0.013	0.053	0.128	1.092	1.076	0.669	1.051	0.298
2007	0.012	0.044	0.806	0.870	2.507	4.208	2.205	2.358	1.029
2008	0.004	0.062	0.191	1.029	0.991	1.606	2.218	1.001	0.357
Avg 1999-02	0.004	0.058	0.497	0.979	0.944	1.099	0.983	1.000	0.725
Avg 2004-08	0.007	0.042	0.276	0.655	1.396	1.985	2.016	1.494	0.614

Table 25. Partial recruitment of haddock normalized to ages 5 to 8 from the eastern Georges Bank Canadian commercial fishery during 1991-2008.

		Age Group							
Year	1	2	3	4	5	6	7	8	$9+$
1991	0.033	0.861	0.529	1.179	0.614	0.993	1.875	1.129	0.388
1992	0.011	0.309	0.630	0.761	1.045	0.614	0.960	0.982	0.299
1993	0.012	0.081	0.714	1.115	1.084	1.055	0.395	1.025	0.338
1994	0.010	0.111	0.578	1.080	0.854	3.077	0.784	1.027	0.325
1995	0.009	0.058	0.474	0.843	1.125	1.100	0.700	0.877	0.268
1996	0.004	0.036	0.336	0.809	0.954	1.558	0.890	0.871	0.640
1997	0.014	0.172	0.172	0.771	1.008	1.001	0.806	0.886	0.622
1998	0.016	0.099	0.569	0.620	0.948	1.193	0.724	0.898	0.650
1999	0.008	0.052	0.553	0.968	0.919	0.978	1.132	0.992	0.589
2000	0.005	0.107	0.650	1.230	1.078	1.052	0.808	1.125	0.611
2001	0.002	0.051	0.586	0.826	0.929	1.229	1.148	0.949	0.809
2002	0.002	0.031	0.225	0.936	0.878	1.133	0.830	0.961	0.874
2003	0.013	0.020	0.185	0.331	0.926	1.277	1.048	1.000	0.642
2004	0.004	0.043	0.128	0.333	0.669	0.999	1.959	1.000	0.545
2005	0.009	0.004	0.066	0.558	1.006	0.977	0.969	1.000	0.271
2006	0.003	0.012	0.051	0.123	1.043	1.028	0.639	1.004	0.285
2007	0.005	0.019	0.347	0.375	1.079	1.811	0.949	1.015	0.443
2008	0.003	0.056	0.173	0.932	0.896	1.453	2.008	0.906	0.323
Avg 1999-02	0.004	0.060	0.503	0.990	0.951	1.098	0.980	1.007	0.721
Avg 2004-08	0.005	0.027	0.153	0.464	0.939	1.254	1.305	0.985	0.373

Table 26. Lengths estimated for the eastern Georges Bank haddock 2003 and 2005 year-class based on growth rates from the 1998, 1999 and 2000 year-classes for input into the catch projection and risk assessment for 2010.

Age	Beginning year length (cm)	Growth rate	Calculated length for following year ${ }^{2}$
2003 Year-class	49.3^{1}	0.047	
6	51.7	0.027	51.7
7	53.1	-	53.1
8			-
2005 Year-class	45.8^{1}	0.078	
4	49.5	0.045	49.5
5	51.8		51.8
6			

[^4]Table 27. Lengths and weights for eastern Georges Bank haddock from the 2009 Canadian Department of Fisheries and Oceans survey compared to weights estimated by the relationship between length and weight (LW) derived by Waiwood and Nielson (1985).

Age	2009 Survey Lengths	Observed (kg)	LW equation (kg)	$\%$ difference
1	23.2	0.114	0.152	75
2	34.7	0.387	0.489	79
3	42.6	0.775	0.893	87
4	45.8	0.999	1.104	90
5	44.9	0.987	1.037	95
6	49.3	1.258	1.366	92
7	51.9	1.482	1.585	93
8	61.7	2.680	2.628	102

Table 28. Beginning year and fishery lengths and weights estimated for the eastern Georges Bank haddock 2003 and 2005 year-classes for input into the risk assessment for 2010.

Age	Beginning of year $^{\text {Weight }^{2}}$				Fishery	
	Length	$10 \%^{3}$		Length	Weight 2	
2003 Year-class	49.3^{1}	1.258^{1}	$\mathrm{~N} / \mathrm{A}$		53.1^{5}	1.695
6	51.7^{4}	1.568	1.411		54.6^{5}	1.839
7	53.1^{4}	1.695	1.526			
8						
2005 Year-class	45.8^{1}	0.999^{1}	$\mathrm{~N} / \mathrm{A}$		51.3^{5}	1.533
4	49.5^{4}	1.381	1.243	53.4^{5}	1.723	
5	51.8^{4}	1.577	1.419			
6						

[^5]Table 29. Input for projections and risk analyses of eastern Georges Bank haddock for the 2010 fishery. A catch of $30,000 \mathrm{mt}$ in 2009 and natural mortality $=0.2$ were assumed for the forecasts. Shaded values indicate the 2003 (yellow) and the 2005 (grey) year-classes.

Year	Age Group								
	1	2	3	4	5	6	7	8	9+
Population Numbers (000s)									
2009	8284	9516	4385	13077	2317	87561	527	302	8833
Partial Recruitment to the Fishery ${ }^{1}$									
2009	0.01	0.03	0.15	0.57^{2}	0.7	0.82^{2}	1	1	0.4
2010	0.01	0.03	0.15	0.5	$0.86{ }^{2}$	1	1^{2}	1	0.4
Weight at beginning of year for population (kg) ${ }^{3}$									
2009	0.11	0.39	0.78	1.00	0.99	1.26	1.48	2.680	2.23
2010	0.11	0.39	0.78	1.00	$1.24{ }^{4}$	1.26	$1.41{ }^{4}$	$1.94{ }^{5}$	2.23
2011	0.11	0.39	0.78	1.00	0.99	$1.42{ }^{4}$	1.48	$1.53{ }^{4}$	2.23
Weight at age for catch (kg) ${ }^{6}$									
2009	0.46	0.79	1.00	$1.53{ }^{7}$	1.39	1.7^{7}	$1.75{ }^{8}$	1.91	2.47
2010	0.46	0.79	1.00	1.23	$1.72{ }^{7}$	1.61	$1.84{ }^{7}$	1.91	2.47
Maturity									
2009	0	0	1	1	1	1	1	1	1
2010	0	0	1	1	1	1	1	1	1
2011	0	0	1	1	1	1	1	1	1

${ }^{1}$ Based on 2004 to 2008 except where indicated. The age 5 value in 2009 of 0.9 was set to 0.7 to provide a smooth trend.
${ }^{2}$ Derived from relationship between fishery weights at age and partial recruitment values for 1995 to 2008. The estimated value of 0.95 for age 7 in 2010 was judged to be close enough to fully recruited to use a value of 1.
${ }^{3} 2009$ Canadian Department of Fisheries and Oceans (DFO) survey average weights at age except where indicated.
${ }^{4}$ Estimated weights based on a length based growth model for the 2003 and 2005 year-classes. Lengths were converted to weights using a length-weight relationship for commercially caught fish (Waiwood and Nielson 1985) and reduced by 10\% to reflect lower population weights at age.
${ }^{5}$ Average of 2007 to 2009 DFO survey average weights at age. The 2009 survey value for age 8 was poorly estimated.
${ }^{6} 2008$ Canadian fishery weights at age except where indicated.
${ }^{7}$ Estimated weights based on a length based growth model for the 2003 and 2005 year-classes. Lengths were converted to weights using a length-weight relationship for commercially caught fish (Waiwood and Nielson 1985).
${ }^{8}$ Average of 2006 to 2008 Canadian fishery weights at age.

Table 30. Bias adjusted deterministic projection results for eastern Georges Bank haddock for the 2010 fishery using 20 million recruits for the 2009 and 2010 year-classes and assuming that the 2009 quota of $30,000 \mathrm{mt}$ is caught. Shaded values indicate the 2003 (yellow) and the 2005 (grey) yearclasses.

Year	Age Group											
	1	2	3	4	5	6	7	8	9+	1+	2+	3+
Population Numbers (000s)												
2009	8844	9695	4398	13217	2326	91080	554	308	9172	139594		
2010	20000	7224	7881	3475	9450	1612	61366	358	7027	118393		
2011	20000	16332	5868	6206	2498	6187	1018	38739	5411	102259		
Population Biomass (mt)												
2009	1008	3752	3409	13204	2295	114579	822	825	20435	160330	159322	155570
2010	2280	2796	6108	3471	11747	2028	86587	695	15657	131369	129089	126293
2011	2280	6321	4548	6200	2466	8779	1508	59116	12056	103273	100993	94673
Fishing mortality												
2009	0.002	0.007	0.036	0.135	0.166	0.195	0.238	0.238	0.095			
2010	0.003	0.008	0.039	0.13	0.224	0.26	0.26	0.26	0.104			
Projected Catch Numbers (000s)												
2009	19	62	140	1521	324	14665	107	59	755	17652		
2010	47	51	273	385	1723	336	12789	75	630	16309		
Catch Biomass (mt)												
2009	9	49	139	2332	451	24857	187	113	1862	30000	29991	29942
2010	22	40	273	473	2968	540	23519	143	1554	29530	29509	29468

Figure 1. Fisheries statistical unit areas in North Atlantic Fisheries Organization Subdivision 5Ze. Alpha-numeric codes, e.g. 5Zej, are the Canadian Department of Fisheries and Oceans designations and numeric codes, e.g. 561, are National Marine Fisheries Service designations. The eastern Georges Bank management unit is outlined by a heavy red line.

Figure 2. Historical catch of eastern Georges Bank haddock during 1931-1955 (Gavaris and Van Eeckhaute 1997) compared to recent catches during 1969-2008. Catch data for 1956 to 1968 were not available by unit area.

Figure 3. Nominal catches of eastern Georges Bank haddock during 1969-2008.

Figure 4. Haddock landings in eastern Georges Bank by month and gear for the Canadian commercial groundfish fishery in 2008 (wide bars) with sampling levels (narrow bars).

Figure 5. Numbers at length by the principal Canadian eastern Georges Bank commercial haddock fisheries in 2008. The scallop dredge length frequency is expanded according to the axis on the right.

Figure 6. Numbers at length by quarter for the Canadian eastern Georges Bank commercial haddock fisheries in 2008.

Figure 7. Percent landings at age by quarter for haddock by the Canadian groundfish fishery on eastern Georges Bank in 2008.

Figure 8. Haddock landings at length in numbers and proportion by market category by half year in the USA eastern Georges Bank groundfish fisheries in 2008.

Figure 9. Haddock landings and discards at length in numbers and proportion in the USA eastern Georges Bank groundfish fisheries in 2008.

Figure 10. Percent catch at age of haddock by the United States eastern Georges Bank groundfish fisheries in 2008.

Figure 11. Total commercial catch at age (numbers) of eastern Georges Bank haddock during 19692008. The bubble area is proportional to magnitude.

Figure 12. Projected and observed 2008 eastern Georges Bank haddock catch in percent composition.

Figure 13. Average weights at age for eastern Georges Bank haddock from the Canadian commercial groundfish fishery during 1969-2008 and from the Canadian Department of Fisheries and Oceans survey during 1986-2009.

Figure 14. Average weights at age for eastern Georges Bank haddock from the Canadian commercial groundfish fishery during 1969-2008 and from the Canadian Department of Fisheries and Oceans survey during 1986-2009

Figure 15. Age composition of the haddock catch for the eastern Georges Bank commercial fishery during 1969-1974, 1975-1984, 1985-1994, 1995-2004, and 2005-2008.

Figure 16. Stratification scheme used for National Marine Fisheries Service surveys. The eastern Georges Bank management area is indicated by shading.

Figure 17. Stratification scheme used for the Canadian Department of Fisheries and Oceans survey. The eastern Georges Bank management area is indicated by shading.

Figure 18. Distribution of eastern Georges Bank haddock abundance (number/tow) as observed from the National Marine Fisheries Service fall survey. The squares (left panels) are shaded relative to the average survey catch for 1998 to 2007. The expanding symbols (right panels) represent the 2008 survey catches.

Figure 19. Distribution of eastern Georges Bank haddock abundance (number/tow) as observed from the Canadian Department of Fisheries and Oceans survey. The squares (left panels) are shaded relative to the average survey catch for 1999 to 2008. The expanding symbols (right panels) represent the 2009 survey catches.

Figure 20. Distribution of eastern Georges Bank haddock abundance (number/tow) as observed from the National Marine Fisheries Service spring survey. The squares (left panels) are shaded relative to the average survey catch for 1999 to 2008 . The 2009 survey data was not available.

Figure 21. Estimated abundance at age (numbers in 000's) of eastern Georges Bank haddock for the Canadian Department of Fisheries and Oceans (DFO), National Marine Fisheries Service (NMFS) spring and NMFS fall surveys during 1963-2008. Bubble area is proportional to magnitude (see Tables 14-16). Conversion factors to adjust for changes in door type and survey vessel were applied to the NMFS surveys. From 1973-81 (pale circles), a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years. Symbol size has not been adjusted between surveys for the catchability of the survey.

Figure 22. Biomass from National Marine Fisheries Service (NMFS) fall (ages 2-8), NMFS spring (ages 3-8) and Canadian Department of Fisheries and Oceans (DFO) (ages 3-8) research surveys (scaled by calibration constants) for eastern Georges Bank haddock during 1963-2009. No data available for NMFS 2009 spring survey.

Figure 23. Year-class abundance for ages 0 and 1 from the National Marine Fisheries Service (NMFS) fall survey and ages 1 and 2 from the NMFS spring and Canadian Department of Fisheries and Oceans (DFO) research surveys (scaled by calibration constants) for eastern Georges Bank haddock during 1963-2009. No data available for 2009 NMFS spring survey.

Figure 24. Length at age for eastern Georges Bank haddock derived from Canadian Department of Fisheries and Oceans surveys during 1986-2009.

Figure 25. Residuals by year and age group for the Canadian Department of Fisheries and Oceans (DFO) for 1986 to 2009 and the National Marine Fisheries Service (NMFS) research survey indices during 1969-2008 for eastern Georges Bank haddock. Solid symbols indicate positive values, open symbols indicate negative values. Bubble area is proportional to magnitude. From 1973-81 (pale circles), a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years.

Figure 26. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the Department of Fisheries and Oceans spring survey during 1986-2009.

Figure 27. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the National Marine Fisheries Service spring survey with a Yankee 36 net during 1969-1972 and 1982-2008.

Figure 28. Age by age plots of the observed and predicted In abundance index versus in population numbers for eastern Georges Bank haddock from the National Marine Fisheries Service spring survey with a Yankee 41 net during 1973-1981.

Figure 29. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the National Marine Fisheries Service fall survey 19692008.

Figure 30. Retrospective estimates of eastern Georges Bank haddock year-class abundance as additional years of data were included in the assessment.

Figure 31. Retrospective estimates from virtual population analysis of eastern Georges Bank haddock biomass and fishing mortality as successive years of data were excluded in the assessment.

Figure 32. The eastern Georges Bank adult haddock (ages 3+) biomass trend from virtual population analysis compared with the survey adult biomass (scaled with catchabilities) trends.

Figure 33. Beginning of year adult (3+) biomass and number of age 1 recruits for eastern Georges Bank haddock during 1931-1955 and 1969-2009.

Figure 34. Confidence distribution with 80\% confidence intervals for 2009 eastern Georges Bank haddock ages $3+$ biomass (000 mt) and 2008 ages 5+ fishing mortality.

Figure 35. Fishing mortality rate (weighted by population) for eastern Georges Bank haddock ages 4+ and 5+ during 1969-2008 and the fishing mortality threshold reference established at $\mathrm{F}_{\text {ref }}=0.26$.

Figure 36. Average partial recruitment of eastern Georges Bank haddock for 3 year-classes, 1998, 2000 and 2003 and the average for 2004 to 2008. The partial recruitment is normalized to ages $4-8$ for years before 2003 and to ages 5-8 for years after 2002.

Figure 37. Surplus production of eastern Georges Bank haddock available to the commercial fishery compared to the harvested yield during 1969-2008.

Figure 38. Amount of productivity attributible to growth (ages 2 to $9+$) of eastern Georges Bank haddock and the amount contributed by recruitment (age 2) during 1969-2008.

Figure 39. Relationship between eastern Georges Bank adult (ages 3+) haddock biomass and recruits at age 1 during 1931-1955 and 1969-2008.

Figure 40. Ratio of recruits (numbers at age 1) to spawning biomass (kg) for eastern Georges Bank haddock during 1931-1955 and during 1969-2008.

Figure 41. The age composition and absolute abundance at age of the eastern Georges Bank haddock population in 2009 compared to averages during 1931-1955, 1969-1974, 1975-1984, 1985-1994, and 1995-2005.

Figure 42. Canadian Department of Fisheries and Oceans survey weights at length for eastern Georges Bank haddock for six 2 cm length groupings during 1986-2009. The dashed lines represent the average weight over the time series for each length.

Figure 43. Growth of eastern Georges Bank haddock year-classes.

Figure 44. Relationship between length and growth rate derived for eastern Georges Bank haddock using observed growth increments from the 1998, 1999 and 2000 year-classes.

Figure 45. Relationship between eastern Georges Bank haddock beginning of year lengths (from Canadian Department of Fisheries and Oceans surveys) for 1995 to 2006 to average fishery lengths for the same year smoothed with a Loess smoothing algorithm (Clevand 1979). The lengths of the 2003 haddock year-class at age $6(49.3 \mathrm{~cm})$ and age $7(51.7 \mathrm{~cm})$ with the corresponding fishery lengths, 53.1 cm and 54.6 cm for ages 6 and 7, respectively, are indicated. The 1:1 line is added for illustrative purposes.

Figure 46. Relationship between eastern Georges Bank haddock beginning of year lengths (from Canadian Department of Fisheries and Oceans surveys) for 1995 to 2006 to average fishery lengths for the same year smoothed with a Loess smoothing algorithm (Clevand 1979). The lengths of the 2005 haddock year-class at age $4(45.8 \mathrm{~cm})$ and age $5(49.5 \mathrm{~cm})$ with the corresponding fishery lengths, 51.3 cm and 53.6 cm for ages 4 and 5, respectively, are indicated. The 1:1 line is added for illustrative purposes.

Figure 47. Average population lengths at age and average fishery lengths at age of the 1998, 1999, 2000, 2003 and 2005 year-classes of eastern Georges Bank haddock as observed from the Canadian Department of Fisheries and Oceans survey. Predicted lengths for the 2003 and 2005 year-classes are indicated by \diamond and \square, respectively.

Figure 48. Fishery weight and partial recruitment relationship observed for eastern Georges Bank haddock in 1995 to 2008. A smoothed line was fitted to the data using a loess algorithm (Cleveland 1979). The 2003 year-class predicted fishery weight at age $6(1.695 \mathrm{~kg})$ and age $7(1.839 \mathrm{~kg})$ with the corresponding partial recruitment (0.82 and 0.95 , respectively) are indicated by the dotted lines. The 2005 year-class predicted fishery weight at age $4(1.533 \mathrm{~kg})$ and age $5(1.723 \mathrm{~kg})$ with the corresponding partial recruitment (0.57 and 0.86 , respectively) are indicated by the solid lines.

Figure 49. Risk of 2010 fishing mortality exceeding $F_{\text {ref }}=0.26$ for eastern Georges Bank haddock for increasing catch quotas.

Appendix A. Reconstructing the USA Eastern Georges Bank catch history of haddock (1989-2007) and a comparison of the methods to derive the catch components.

EXECUTIVE SUMMARY

Standardized methodology for determining landings allocation and for estimating discards have recently been developed at the Northeast Fisheries Science Center (NEFSC; Palmer 2008, Wigley et al. 2008a, 2008b) and were accepted by peer review panels during the Groundfish Assessment Review Meeting (NEFSC 2008). Current values for USA landings and discards from the most recent Eastern Georges Bank haddock assessment (Van Eeckhaute et al. 2008) were compared to values derived by applying the new algorithms for the years 1989-2007. These years correspond to the period of available data from the Northeast Fisheries Observer Program. The comparison was made in several steps to allow examination of differences due to each component of the catch. In general, differences from the landings allocation were minimal. Re-deriving the discard time series using the existing methodology (discarded to kept of haddock on observer trips) and then raising the d:k ratios by the new estimated haddock landings (using allocation method) also produced very similar estimates. Discards calculated with a ratio of discarded haddock to kept of all species (Wigley et al. 2008b) generally produced estimates similar to the d:k haddock method. Finally, comparing total catch (USA+Canada) for the new estimates with the existing TRAC values, the differences were found to be negligible. The methods developed by Palmer (2008) and Wigley et al. (2008a, 2008b) have been adopted as best available science at the NEFSC and will continue to be used in developing catch for USA stock assessments. For consistency, it is recommended that the assessment of Eastern Georges Bank haddock use the landings and discard estimates produced by applying the new standardized methodology.

METHODS

Landings

Prior to the fall of 2007, landings from 1994 to present were apportioned to stock-specific areas and market categories by attempting to match dealer reported landings to vessel trip reports. Unmatched dealer landings were pro-rated to stock area by a ratio of the proportion of known stock area landings to total landings by species (Wigley et al. 1998). The result of this matching and proration was at the stock area level rather than the statistical area.

Recent efforts by Palmer (2008) and Wigley et al. (2008a) have attempted to enhance and standardize the matching and allocation process, and to make use of all available information. The allocation of commercial landings to statistical area was addressed comprehensively in Wigley et al. (2008a). Reports from dealers are matched with vessel trip reports in a multi-tiered fashion in order to allocate landings and effort to statistical areas on a trip basis. This allocation method was developed to replace the single-species proration scheme that had been used on landings data since 1994. Applying this allocation procedure produces pro-rated landings at the statistical area rather than the stock area, and also estimates the associated effort. A similar multi-tiered matching algorithm was developed to pro-rate landings with unknown market category and the small fraction of landings with unknown statistical area (Palmer 2008). The supporting code for these methods allows multiple years to be processed in a single run, and all decisions are documented in the program as well as in the output for future reference.

Discards

Prior to 2008, discards of haddock were estimated by calculating year-quarter-gear-haul specific ratios of discarded to kept haddock on observed trips. The average d:k (haddock) ratio was then calculated at the year-quarter-gear level. This gear-specific d:k (haddock) ratio was then multiplied by estimated year-quarter-gear landings of haddock. These estimated discards were then summed over gears and quarters to arrive at annual discards.

In response to a need at the NEFSC to develop a methodology to estimate discards for all fleets and species, and to project anticipated levels of coverage needed for future observer trips, a standardized by-catch reporting methodology was developed (Wigley et al. 2008b). For this method, the d:k ratio is calculated as discarded haddock to kept of all species. Observer coverage is evaluated at the year-quarter-gear-(mesh size, if applicable) level. If observer coverage is too sparse at a quarterly time-step, then data can be imputed at the semi-annual level to handle sparse quarters, or, data can be imputed at the annual level to handle sparse half-years. The analyst decides the appropriate time unit for estimation, and for imputation, and the $\mathrm{d}: \mathrm{k}$ ratio is then multiplied by landings of all species at the associated time-step. Annual discards by gear (and mesh size) are then computed.

RESULTS

Landings

A comparison was made between the landings reported in the 2008 EGB haddock assessment (Van Eeckhaute et al., 2008) to landings estimated by the new allocation procedure (Palmer 2008; Wigley et al. 2008a). In general, landings were similar (Table A1, Figure A1a). For years where there are differences, possible reasons include updates to the commercial database, and differences introduced by applying the standardized allocation method.

Discards

Annual discards were estimated twice for comparison with the discards reported in Van Eeckhaute et al. (2008). First, discards were estimated according to the current methodology, which calculates a ratio of discarded to kept haddock by gear and quarter. The resulting d:k (haddock) ratio was then multiplied by the haddock landings as estimated by the new allocation procedure (Palmer 2008; Wigley et al. 2008a) to evaluate the effect of the new landings on the discard estimates. In general, the discard estimates were similar, although there were several instances where zero discards were listed in Van Eeckhaute et al. (2008) but non-zero discards were estimated with the d:k (haddock) method (Table A2, Figure A1b). This generally happened for years prior to 2001, when observed trips were very sparse. The year 1994 is the only estimate that differs appreciably, in this case by almost three-fold. Discrepancies between the two sets of values for annual discards could be due to updates to the observer data, updates to the commercial landings database, and differences introduced by applying the landings allocation method (Palmer 2008; Wigley et al. 2008a). In addition, there may have been year or gear specific decisions that previous analysts made to include or exclude observations. No attempt was made in this analysis to filter observations.

The second estimation of discards applied the new ratio of discarded haddock to kept of all species (Wigley et al. 2008b) to the new estimates of landings of all species. In producing this set of discard estimates, very close attention was paid to observer coverage by gear and year in order to determine the most appropriate time-step for calculation. Observations were pooled to
half-years, and in half-years where zero or only one trip is observed, then the empty semiannual cells are imputed at the annual level. The gears initially considered for this analysis were longline, otter trawl (large and small mesh, separately), gillnet (small, large, and extralarge sizes), and scallop dredge. Table A3 lists the years that the observer program data exist (1989-2008), and the gears that were deemed to have sufficient trips (both observed and unobserved) to warrant discard estimation in each year. Additional details of the fleet-specific data are given in Appendix B. Discard estimates from this exercise are given in Table A2 along with the Van Eeckhaute et al. (2008) and the d:k (haddock) discard estimates. As with the d:k (haddock) discard estimates, there are issues with zero versus non-zero discard estimates for years before 2001, but they are generally small amounts of discard. Also, the estimate in 1994 differs by a factor of about 5 . At present, no solid explanations are offered for this difference. It is worth noting, however, that changes occurred both in the fishing regulations and in the reporting of landings, which might contribute to the overall uncertainty of this estimate.

Total Catch

Estimates of total USA catch (mt) from using the new landings estimates (Palmer 2008; Wigley et al. 2008a) and from the two sets of new discard estimates were compared to the total USA catch as given in the 2007 haddock assessment for 2007 (Van Eeckhaute et al. 2008). The estimates were all similar with the exception of 1994, where the new discard estimates are an order of magnitude greater than the existing estimate (Table A4, Figure A1c). When annual catch from Canada is summed with the estimated USA catch, the annual differences are negligible (except for the year 1994) because the USA fraction of total catch is small (Table A4, Figure A1d).

CONCLUSIONS

A new series of estimates for the USA haddock landings and discards on eastern Georges Bank was calculated by applying recently developed methodology (Palmer 2008; Wigley et al. 2008a, 2008b). These new estimates were compared to values in the most recent assessment (Van Eeckhaute et al. 2008) to determine the impact of new data and the new methods. Overall, the changes in the estimates made a negligible impact on total catch (USA+Canada). For the USA portion of catch, re-estimated landings were very similar, and both new discard estimates were reasonably close with the exception of the year 1994. No auxiliary information is available at this point to support or reject that estimate, which is three to five times higher than the value currently used. It is expected that any impact of the catch in that year would no longer have an impact on the recent estimates of number at age or fishing mortality at age owing to the plus group being at age 9 .

The methodologies introduced by Palmer (2008) and Wigley (2008a, 2008b) have been adopted by the NEFSC as best available science after peer review, and will be used in future stock assessments conducted at the NEFSC. It is therefore recommended that the landings estimates derived by the new allocation algorithm (Palmer 2008, Wigley et al. 2008a) be used in the assessment for this year and in future assessments. It is also recommended that the new discard estimation procedure (Wigley et al. 2008b) be used in this year's assessment and in future assessments.

In addition to evaluating the effect of the new data and new methods on estimated USA catch at age, this document is intended to provide a paper trail to link the existing estimates to the values that are recommended to be used from this point forward.

ACKNOWLEDGEMENTS

K. Sosebee explained important nuances of the NEFSC databases.

LITERATURE CITED

NEFSC. 2008. Assessment of 19 Northeast Groundfish Stocks through 2007: Report of the $3^{\text {rd }}$ Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts, August 4-8, 2008. US Dep. Commer., NOAA Fisheries, Northeast Fish. Sci. Cent. Ref. Doc. 08-15; 884p + xvii.

Palmer, M. 2008. A Method to Apportion Landings with Unknown Area, Month and Unspecified Market Categories Among Landings with Similar Region and Fleet Characteristics. Groundfish Assessment Review Meeting (GARM III) Part 3. Reference Points Meeting. Working Paper 4.4. 9 p.

Wigley, S.E., P. Hersey, and J.E. Palmer. 2008a. A Description of the Allocation Procedure Applied to the 1994 to 2007 Commercial Landings Data. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 08-16; 61 p.

Wigley, S.E., M. Terceiro, A. DeLong, and K. Sosebee. 1998. Proration of 1994-96 USA Commercial Landings of Atlantic Cod, Haddock, and Yellowtail Flounder to Unit Stock Areas. Northeast Fish. Sci. Cent. Ref. Doc. 98-02; 32 p.

Wigley, S.E., M.C. Palmer, J. Blaylock, and P.J. Rago. 2008b. A Brief Description of the Discard Estimation for the National By-Catch Report. Northeast Fish. Sci. Cent. Ref. Doc. 08-02; 35 p.

Van Eeckhaute, L., E.N. Brooks, and M. Traver. 2008. Assessment of Haddock on Eastern Georges Bank for 2008. TRAC Ref. Doc. 2008/02.

Table A1. USA landings (mt) of haddock on eastern Georges Bank for years 1989-2008. Landings were re-estimated using the methodology of Palmer (2008) and Wigley et al. (2008a). These landings estimates are compared to the most recent TRAC assessment of eastern Georges Bank haddock (Van Eeckhaute et al. 2008).

	Palmer, Wigley Methods	TRAC values
1989	785	787
1990	1189	1189
1991	931	949
1992	1629	1629
1993	424	421
1994	24	33
1995	15	22
1996	26	36
1997	55	48
1998	271	311
1999	359	355
2000	340	187
2001	762	604
2002	1090	914
2003	1677	1564
2004	1847	1796
2005	649	512
2006	313	445
2007	243	247

Table A2. Estimated USA discards (mt) of haddock on eastern Georges Bank for years 1989-2008. Discards were re-estimated using a ratio of discarded to kept haddock or a ratio of discarded haddock to kept of all species (Wigley et al. 2008b). The d:k ratios were each multiplied by landings estimated with the new allocation methods (Palmer 2008, Wigley et al. 2008a). Discard estimates from the most recent TRAC assessment (Van Eeckhaute et al. 2008) are given for comparison.

	Re-estimate d:k (haddock)	Wigley et al., d:k (all)	TRAC values
1989	27	137	0
1990	44	76	0
1991	0	0	0
1992	4	9	0
1993	56	106	0
1994	669	1279	258
1995	0	0	25
1996	1	5	41
1997	0	1	63
1998	0	0	14
1999	5	5	0
2000	23	3	0
2001	45	22	40
2002	45	16	35
2003	68	96	63
2004	158	235	156
2005	70	76	57
2006	132	275	146
2007	204	298	482
2008	51	44	N/A

Table A3. Selection of gears and mesh that were used to re-estimate annual USA discards on eastern Georges Bank for the years 1989-2008 using the ratio of discarded haddock: kept of all species (Wigley et al. 2008b). Gear abbreviations are as follows: LL=longline/hook and line; OT-large=otter trawl large mesh; OT-small=otter trawl small mesh; Scallop=scallop dredge.

Year	Gears-mesh used
1989	OT-large, OT-small
1990	OT-large, OT-small
1991	OT-large
1992	OT-large, Scallop
1993	OT-large, Scallop
1994	OT-large
1995	OT-large, Scallop
1996	OT-large, Scallop
1997	OT-large, Scallop
1998	OT-large, Scallop
1999	OT-large, Scallop
2000	OT-large, OT-smallall, Scallop
2001	OT-large, OT-small
2002	OT-large, OT-small
2003	OT-large, OT-small
2004	OT-large, OT-small, Scallop
2005	OT-large, OT-small, LL, Scallop
2006	OT-large, OT-small, LL, Scallop
2007	OT-large, OT-small, LL, Scallop
2008	OT-large, OT-small, LL, Scallop

Table A4. Estimated total catch in metric tons of haddock on eastern Georges Bank (USA only and USA+Canada). Landings from the new allocation methods (Palmer 2008, Wigley et al. 2008a) were used with discards estimated from either the d:k (haddock) ratio or the discarded haddock:kept all species ratio (Wigley et al. 2008b). These two total catch estimates are compared to the values in the most recent TRAC assessment of eastern Georges Bank haddock (Van Eeckhaute et al. 2008).

	Re-est. d:k (haddock) USA	Wigley et al., d:kept (all) USA	TRAC USA	Re-est. d:k (haddock) CAN+USA	Wigley et al., d:kept (all) CAN+USA	TRAC CAN+USA
Year	813	922	787	4011	4120	3985
1989	1233	1265	1189	4701	4733	4657
1990	931	931	949	6504	6504	6522
1991	1633	1638	1629	5821	5826	5817
1992	480	530	421	4321	4371	4262
1993	693	1302	291	3218	3827	2816
1994	15	16	47	2149	2150	2181
1995	27	31	77	3742	3746	3792
1996	55	56	111	2864	2865	2920
1997	272	271	325	3745	3744	3798
1998	365	364	355	4094	4093	4084
1999	364	343	187	5795	5774	5618
2000	807	784	644	7620	7597	7457
2001	1135	1106	949	7652	7623	7466
2002	1744	1772	1627	8618	8646	8501
2003	2005	2081	1952	11843	11919	11790
2004	719	724	569	15255	15260	15105
2005	445	588	591	12496	12639	12642
2006	447	541	729	12398	12488	12680
2007	1187	1181	N/A	N/A	N/A	N/A

Figure A1. Comparison of USA landings (a), USA discards (b), USA catch (c), and total USA+Canada catch (d). Landings were re-estimated by applying new allocation procedures (Palmer 2008; Wigley et al. 2008a), and discards were re-estimated for a d:k ratio of only haddock or discarded haddock to kept of all species (Wigley et al. 2008b). The re-estimated USA values are compared to those listed in the most recent TRAC assessment of Eastern Georges Bank haddock (Van Eeckhaute et al. 2008).

Appendix B. Details on the year-gear combinations selected for discard estimation.

The following gears were examined for possible inclusion in the estimation of USA discards for eastern Georges Bank haddock:

Longline
Otter Trawl (small, large mesh sizes)
Gillnet (small, large, extra-large mesh sizes)
Scallop Dredge
The number of reported trips from dealer data by gear and half year were examined for each gear (mesh) combination listed above. In addition, the number of observed trips was tallied. After examination of this information, it was determined that there were very few gillnet tripswith any mesh size- occurring on eastern Georges Bank, and that gear was not considered further (Table B1). Most of the commercial trips to eastern Georges Bank are large mesh otter trawl, with a few long line trips in recent years. There seems to be a small but consistent presence of small mesh otter trawlers as well, but typically fewer than 50 trips per year. Historically, there were a large number of scallop dredge trips, primarily in the second half of the year, but the number of trips for this gear has decreased substantially in the last 2 years.

Gear (and mesh) by half-year cells where discards were estimated are identified in Table B1. Cells by gear and half-year that had sparse observer coverage (<2 trips) were imputed at the annual level. Note that if there were no observed trips in a given year, then no imputation was done. While an average of adjacent years could be considered as a possible estimate for years with no observer coverage, this would only provide total annual discards and further assumptions would be required to produce length frequencies and age-length keys for that year. This is not expected to be a shortcoming of the discard estimates because only the year 1997 has no observed trips for the large mesh otter trawl fishery. The discard estimates are very low before (0.4 mt in 1995, 4.6 mt in 1996) and after 1997 (0 mt in 1998, 5.1 mt in 1999). The number of commercial trips in 1997 was also similar to the number of trips in the adjacent years, which had low discarding. Of the remaining gears on eastern Georges Bank, there were few trips for longline and small mesh otter trawl, which did not appear to be contributing to discards in that era. For the scallop dredge trips, even with high observer coverage, discards tended to be very minor. Finally, there were no strong year-classes in the early to mid-1990s that would be expected to contribute to high discarding of undersized fish.

For the gears that were retained for discard analysis, the fraction of trips that were observed is reported in Table B2. Observer coverage was sparse prior to 2000 but has increased substantially since then.

Discard estimates (in mt) are reported for the year-gear (mesh) combinations selected for analysis (Table B3). In general, 95-100\% of annual discards are due to the large mesh otter trawl fishery. In recent years, the longline gear has been a significant source of discards, while small mesh otter trawl trips contribute a very small amount. Discards due to the scallop fleet are very small.

The coefficient of variation of annual discards by gear are reported in Table B4, as well as the CV on total annual discards. Prior to 2000, the precision is poor due to the very low observer coverage. Since 2000, the CV has been less than 40% for the main gears responsible for discards. The CV is fairly high on small mesh otter trawl, but this fleet has a very small amount of discards attributed to it.

Table B1. Summary of dealer reported commercial trips and observed trips by gear (and mesh) and halfyear for eastern Georges Bank for 1989 to 2008. Shaded cells with bold font were retained for discard analysis. *=Imputation.

	Longline/Hook \& Line				Otter Trawl (large mesh)				Otter trawl (small mesh)			
	Dealer Trips		Observ. Trips		Dealer Trips		Observ. Trips		Dealer Trips		Observ.Trips	
Year	Qtr12	Qtr34										
1989	3				692	322	8	4	12	2	2	1
1990					717	255	7	3	2		1	
1991	3	2	1		793	251	4	1	1	0		
1992		3	2		769	429	8	3	3	8		
1993	2				618	399	11	2	3	3		
1994		9			132	412	12	3	12		1	
1995	10				129	77	13	2	5	7		
1996	2				176	98	9	*	18	7		
1997	21	3			139	51			8	8		
1998	4				137	69	*	2	13	3		
1999	5	3			204	88	2	2	9	6		
2000	1	1			226	83	3	6	22	7	1	1
2001					271	79	7	4	20	18	1	1
2002					252	120	7	14	25	14	1	5
2003					360	200	41	27	18	28	3	1
2004					366	221	42	27	27	13	3	3
2005	14	20	11	6	114	86	66	33	9	17	7	7
2006	24	4	4	*	115	19	37	8	3	26	2	3
2007	20	1	6	*	119	45	32	17	68	44	8	2
2008	35	12	7	1	18	184	10	118	43	15	4	1

	Gillnet (all mesh combined)				Scallop Dredge			
	Dealer Trips		Observ. Trips		Dealer Trips		Observ. Trips	
Year	Qtr12	Qtr34	Qtr12	Qtr34	Qtr12	Qtr34	Qtr12	Qtr34
1989	2	20			296	298		
1990	2	23			282	696		
1991	1	6			419	259		
1992	2	18			193	396	1*	3
1993		3			299	208	3	3
1994	2	16			58	36	1	
1995	6	1			19	47	1*	2
1996	2				22	45	2	2
1997	1	6			58	57	2	2
1998	10	2			82	60	2	1
1999	18	5			89	566	4	14
2000	9	1			86	115	25	65
2001	10	3			11	16		
2002	21	5			11	12		
2003	24	7			75	32		1
2004	16	11		2	22	165	2	20
2005	4	2			74	262	4	27
2006	7	12			92	532	8	41
2007	9	4	2		51	46	4	7
2008	15	5			36	28	8	8

Table B2. Fraction of commercial trips to eastern Georges Bank for 1989 to 2008 by gear (and mesh) that had an observer. Highlighted cells with bold text were used for discard estimation. Gear abbreviations are as follows: LL=longline/hook and line; OT-large=otter trawl large mesh; OT-small=otter trawl small mesh; Scallop=scallop dredge. Empty cells had no dealer reported trips.

YEAR	LL	OTlarge	$\begin{array}{r} \text { OT- } \\ \text { small } \end{array}$	Scallop
1989	0	0.01	0.23	0
1990	0	0.01	0.5	0
1991	0.2	<0.01	0	0
1992	0.67	0.01	0	0.01
1993	0	0.01	0	0.01
1994	0	0.03	0.08	0.01
1995	0	0.07	0	0.05
1996	0	0.03	0	0.06
1997	0	0	0	0.03
1998	0	0.01	0	0.02
1999	0	0.01	0	0.03
2000	0	0.03	0.07	0.45
2001	0	0.03	0.05	0
2002	0	0.06	0.15	0
2003	0	0.12	0.09	0.01
2004	0	0.12	0.15	0.12
2005	0.51	0.5	0.54	0.09
2006	0.14	0.34	0.17	0.08
2007	0.28	0.3	0.09	0.11
2008	0.17	0.64	0.09	0.25

Table B3. Discard estimates (mt) for eastern Georges Bank for 1989 to 2008 by year-gear (mesh) category, and the percentage of total discards due to large mesh otter trawl gear (OT-lg). Gear abbreviations are as follows: LL=longline/hook and line; OT-large=otter trawl large mesh; OT-small=otter trawl small mesh; Scallop=scallop dredge. Empty cells are year-gear combinations where discard estimation was not performed due to very low (or no) sampling.

					\% discards due	
Year	LL	OT-large	OT-small	Scallop	TOTAL	to OT-large
1989		111.7	25.3		137	81.5
1990		76.0	0		76	100.0
1991		0.0			0	
1992		8.9		0.5	9	94.9
1993		105.1		0.8	106	99.3
1994		1278.6			1279	100.0
1995		0.4		0.0	0	100.0
1996		4.6		0.0	5	100.0
1997		0.0		1.2	1	0.0
1998		0.0		0.0	0	0.0
1999		5.1		0.0	5	99.3
2000		3.0	0.0	0.0	3	99.6
2001		22.0	0.2		22	99.3
2002		15.4	0.6		16	96.3
2003		76.1	18.8		95	80.2
2004		230.0	4.1	0.4	235	98.1
2005	3.6	69.0	2.6	0.4	76	91.2
2006	140.2	101.6	32.3	0.7	275	37.0
2007	9.7	282.9	4.7	1.0	298	94.8
2008	8.1	35.5	0.1	0.7	44	80.0

Table B4. CV of discard estimates by year and gear (and mesh) category, and CV on total discards. Gear abbreviations are as follows: LL=longline/hook and line; OT-large=otter trawl large mesh; OTsmall=otter trawl small mesh; Scallop=scallop dredge. Empty cells are year-gear combinations where discard estimates were either 0 mt , or no discards were estimated due to low sampling (see Tables B1, B2).

Year	LL	OT-large	OT-small	Scallop	TOTAL
1989		0.23	0.16		0.19
1990		0.48			0.48
1991				0.62	0.99
1992		1.04		0.69	0.60
1993		0.60			0.77
1994		0.77			0.74
1995		0.74		0.59	0.59
1996		0.59		1.02	1.02
1997				0.94	0.47
1998					0.92
1999		0.47		0.24	
2000		0.24			0.25
2001		0.25			0.28
2002		0.28	1.19		0.31
2003		0.33	0.81		0.38
2004		0.39	0.53	0.35	0.25
2005	0.24	0.28	0.59	0.47	0.25
2006	0.34	0.20	1.02	0.29	0.22
2007	0.34	0.21	0.66	0.46	0.20
2008	0.13	0.22	0.43	0.26	0.17

[^0]: ${ }^{1}$ Tonnage class 1 landings included in 'Total' if not specified. Historically, tonnage class 1 accounted for a low proportion of total otter trawl landings but the proportion has increased in recent years..
 ${ }^{2}$ Total includes catches for tonnage classes which are not listed, only tonnage classes with substantial catches listed
 ${ }^{3}$ Catches in 1988 of 26t, 776t, 1091t and 2 t for side otter trawlers and stern otter trawlers tonnage classes 2, 3 and 5 respectively were excluded because of suspected area misreporting.

[^1]: ${ }^{1}$ United States landings at age were calculated by half year, however, landings occurred in other quarters.

[^2]: ${ }^{1}$ One haddock measured.
 ${ }^{2}$ Excludes 16.5 cm value in 2005.

[^3]: ${ }^{1}$ The weight midway between the age 6 and 8 weight for that cohort was used as data were not available for this age group.

[^4]: ${ }^{1}$ Observed 2009 beginning year length for 2003 and 2005 year-classes from the Canadian Department of Fisheries and Oceans survey
 ${ }^{2}$ length $_{a+1}=$ length $_{a} x e^{\text {growth rate }}$

[^5]: ${ }^{1}$ Observed 2009 beginning year length or weight for 2003 and 2005 year-classes from the 2009 Canadian Department of Fisheries and Oceans (DFO) survey
 ${ }^{2}$ weight $=0.0000158 \times$ length ${ }^{2.91612}$ (Waiwood and Neilson 1985)
 ${ }^{3}$ Weight reduced by 10% to reflect lower values for survey weights versus fishery weights
 ${ }^{4}$ Calculated length
 ${ }^{5}$ Estimated from relationship between beginning of year (DFO survey) and fishery lengths the same year.

